首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
论文笔记之:DeepCAMP: Deep Convolutional Action & Attribute Mid-Level Patterns
】的更多相关文章
论文笔记之:DeepCAMP: Deep Convolutional Action & Attribute Mid-Level Patterns
DeepCAMP: Deep Convolutional Action & Attribute Mid-Level Patterns CVPR 2016 本文提出一种 分割图像 patch 的方法,因为细粒度的分类问题,如:行人动作识别 和 行人属性识别等等. Appearance Overview 本文提出一种利用 mid-level 深度视觉模式 进行动作和属性分类,这是属于细粒度分类任务.我们的一个想法是:一个较好的 embedding 可以改善聚类算法的质量.我们设计了一种迭代算法,在每…
论文笔记(1):Deep Learning.
论文笔记1:Deep Learning 2015年,深度学习三位大牛(Yann LeCun,Yoshua Bengio & Geoffrey Hinton),合作在Nature上发表深度学习的综述性论文,介绍了什么是监督学习.反向传播来训练多层神经网络.卷积神经网络.使用深度卷积网络进行图像理解.分布式特征表示与语言处理.递归神经网络,并对深度学习技术的未来发展进行展望. 原文摘要: 1,深度学习可以让那些拥有多个处理层的计算模型来学习具有多层次抽象的数据的表示. …
论文笔记: Dual Deep Network for Visual Tracking
论文笔记: Dual Deep Network for Visual Tracking 2017-10-17 21:57:08 先来看文章的流程吧 ... 可以看到,作者所总结的三个点在于: 1. 文章将 边界和形状信息结合到深度网络中.底层 feature 和 高层 feature 结合起来,得到 coarse prior map,然后用 ICA-R model 得到更加显著的物体轮廓,以得到更好的似然性模型: 2. Dual network 分别处理两路不同的网络,使得前景和背景更加具有…
ASPLOS'17论文导读——SC-DCNN: Highly-Scalable Deep Convolutional Neural Network using Stochastic Computing
今年去参加了ASPLOS 2017大会,这个会议总体来说我感觉偏系统和偏软一点,涉及硬件的相对少一些,对我这个喜欢算法以及硬件架构的菜鸟来说并不算非常契合.中间记录了几篇相对比较有趣的paper,今天简单写一篇. SC-DCNN: Highly-Scalable Deep Convolutional Neural Network using Stochastic Computing 单位作者: 我们知道在神经网络计算中,最主要的计算就是乘加,本篇重点就是解释了什么是Stochastic Comp…
论文笔记之:Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks
Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks NIPS 2015 摘要:本文提出一种 generative parametric model 能够产生高质量自然图像.我们的方法利用 Laplacian pyramid framework 的框架,从粗到细的方式,利用 CNN 的级联来产生图像.在金字塔的每一层,都用一个 GAN,我们的方法可以产生更高分辨率的图像. 引言:在计算…
论文笔记之:Deep Attention Recurrent Q-Network
Deep Attention Recurrent Q-Network 5vision groups 摘要:本文将 DQN 引入了 Attention 机制,使得学习更具有方向性和指导性.(前段时间做一个工作打算就这么干,谁想到,这么快就被这几个孩子给实现了,自愧不如啊( ⊙ o ⊙ )) 引言:我们知道 DQN 是将连续 4帧的视频信息输入到 CNN 当中,那么,这么做虽然取得了不错的效果,但是,仍然只是能记住这 4 帧的信息,之前的就会遗忘.所以就有研究者提出了 Deep Recurre…
论文笔记之: Hierarchical Convolutional Features for Visual Tracking
Hierarchical Convolutional Features for Visual Tracking ICCV 2015 摘要:跟卢湖川的那个文章一样,本文也是利用深度学习各个 layer 之间提取出来的不同特征进行跟踪.因为各个层次提出来的 feature 具有不同的特征.并且将各个层级的特征用现有的 correlation filter 进行编码物体的外观,我们在每一个层上寻找最佳响应来定位物体. 引言:老套路的讨论了现有的跟踪问题存在的挑战以及现有方法取得的一些进展,并且引出了…
论文笔记之:Deep Reinforcement Learning with Double Q-learning
Deep Reinforcement Learning with Double Q-learning Google DeepMind Abstract 主流的 Q-learning 算法过高的估计在特定条件下的动作值.实际上,之前是不知道是否这样的过高估计是 common的,是否对性能有害,以及是否能从主体上进行组织.本文就回答了上述的问题,特别的,本文指出最近的 DQN 算法,的确存在在玩 Atari 2600 时会 suffer from substantial overestimation…
论文笔记之:Fully Convolutional Attention Localization Networks: Efficient Attention Localization for Fine-Grained Recognition
Fully Convolutional Attention Localization Networks: Efficient Attention Localization for Fine-Grained Recognition 细粒度的识别(Fine-grained recognition)的挑战性主要来自于 类内差异(inter-class differences)在细粒度类别中通常是局部的,细微的:类间差异(intra-class differences)由于姿态的变换而导致很大.为了…
论文笔记之:Deep Attributes Driven Multi-Camera Person Re-identification
Deep Attributes Driven Multi-Camera Person Re-identification 2017-06-28 21:38:55 [Motivation] 本文的网络设计主要分为三个部分: Stage 1: Fully-supervised dCNN training Stage 2: Fine-tuning using attributes triplet loss Stage 3:Final fine-tuning on the combined da…