[转载] leveldb日知录】的更多相关文章

原文: http://www.cnblogs.com/haippy/archive/2011/12/04/2276064.html 对leveldb非常好的一篇学习总结文章 郑重声明:本篇博客是自己学习 Leveldb 实现原理时参考了郎格科技系列博客整理的,原文地址:http://www.samecity.com/blog/Index.asp?SortID=12,只是为了加深印象,本文的配图是自己重新绘制的,大部分内容与原文相似,大家可以浏览原始页面 :-),感兴趣的话可以一起讨论 Level…
[LevelDb日知录之五:MemTable详解] LevelDb日知录前述小节大致讲述了磁盘文件相关的重要静态结构,本小节讲述内存中的数据结构Memtable,Memtable在整个体系中的重要地位也不言而喻.总体而言,所有KV数据都是存储在Memtable,Immutable Memtable和SSTable中的,Immutable Memtable从结构上讲和Memtable是完全一样的,区别仅仅在于其是只读的,不允许写入操作,而Memtable则是允许写入和读取的.当Memtable写入…
前一段时间, 一个老师建议我能够学学 '大数据' 和 '机器学习', 他说这必定是今后的热点, 学会了, 你就是香饽饽.在此之前, 我对大数据, 机器学习并没有非常深的认识, 总觉得它们是那么的缥缈, 高不可攀, 也没想着深入学习. 之后, 一次偶然的机会, 在csdn官方博客上看到了这种一个活动 [置顶] 话题讨论&征文--谈论大数据时我们在谈什么 于是, 从下载试读样章, 到正式读书, 開始了学习大数据的过程... 到今天, 差点儿相同两周过去了, 马马虎虎过了一遍, 感触颇多. 以下简单评…
http://blog.csdn.net/yizhu2000/article/details/70688420)序言 日有一知,当有一录,自09年来,工作所需,接触开源平台,对Linux常有涉猎,其间问题,记录在案,虽为敝帚,不敢自珍,所记条目,并未严格整理,但愿于后来者有所裨益. 1)常用 查看某个命令的路径 which:查看某个命令的路径,该命令在PATH变量配置的路径中寻找命令,并给出第一个查询结果返回 查看用户信息的几种方法 finger id groups 删除目录 果目录为空,可以用…
布隆过滤器(bloom filter,BF): 二进制向量数据结构,时空效率很好,尤其是空间效率极高.作用:检测某个元素在某个巨量集合中存在. 构造: 查询: 不会发生漏判(false negative),但误判(false positive)存在,因此BF适合允许少量误判的场景. 计数布隆过滤器(counting bloom filter,CBF): BF基础上支持删除元素操作.数组每个位置1bit扩展为n bits. 另外需要考虑计数溢出问题. BF应用: Chrome浏览器判断恶意url:…
计算广告:逻辑回归 千次展示收益eCPM(Effective Cost Per Mille) eCPM= CTR * BidPrice 优化算法 训练数据使用:在线学习(online learning).批学习(batch learning).mini-batch学习 数据量往往千万到几亿,模型参数达到10~100亿 . 并行随机梯度下降(Parallel Stochastic Gradient Descent): 批学习并行逻辑回归: 重点在计算梯度. step1 算内积 step2 按行聚合…
机器学习算法特点:迭代运算 损失函数最小化训练过程中,在巨大参数空间中迭代寻找最优解 比如:主题模型.回归.矩阵分解.SVM.深度学习 分布式机器学习的挑战: - 网络通信效率 - 不同节点执行速度不同:加快慢任务 - 容错性 机器学习简介: 数据并行vs模型并行: 数据并行 模型并行 分布式机器学习范型: 其他情形 MPI:容错性差.集群规模小.扩展性低 GPU:目前处理规模中等(6-10GB) 1. 同步范型(严格情形每轮迭代进行数据同步) 快等慢,计算资源浪费:网络通信多 eg:MapRe…
MapReduce: 计算模型: 实例1:单词统计 实例2:链接反转 实例3:页面点击统计 系统架构: 在Map阶段还可以执行可选的Combiner操作,类似于Reduce,但是在Mapper side局部执行. Hadoop的MapReduce和Google的很像,只是Hadoop采用HTTPS传输数据,采用归并排序(merge-sort)对中介结果Key排序. MapReduce的特点及不足 优点:可扩展性(数千台机器)/高吞吐,细粒度容错性,编程简单 舍弃的特性:无高层抽象数据操作语言,数…
CAP理论:Consistency,Availability,Partition tolerance 对于一个分布式数据系统,CAP三要素不可兼得,至多实现其二.要么AP,要么CP,不存在CAP.分布式系统往往要求必须满足P. 传统关系数据库选择CA,NoSQL更关注AP. CAP Reloaded: 关系数据库ACID原则:Atomicity,Consistency,Isolation,Durability:更强调数据一致性 NoSQL系统BASE原则:Basically Available,…
目前主流大数据存储使用横向扩展(scale out)而非传统数据库纵向扩展(scale up)的方式.因此涉及数据分片.数据路由(routing).数据一致性问题 二级映射关系:key-partition映射,partition-machine映射 首先找到partition(比如hash),然后找machine(路由routing) hash分片方式1:Round Robin 新增一台机器: 需要重新分配数据归属,灵活性差 hash分片方式2:虚拟桶(virtual buckets) hash…
基本上是hash实用的各种举例 布隆过滤器 Bloom Filter 常用来检测某个原色是否是巨量数据集合中的成员,优势是节省空间,不会有漏判(已经存在的数据肯定能够查找到),缺点是有误判(不存在的数据可能也会被找到). 应用场景有,chrome进行恶意的url判断,爬虫判断爬取过的url,缓存使用BF进行海量数据查找,比特币使用BF对历史交易进行验证. 基本思想是,首先有个位数组,长度为m,将数据a通过n个hash函数进行计算,每个hash得到的结果x 在[1,m]区间,将x作为一个索引,索引…
本章主要讲解大数据下如何做数据分片,所谓分片,即将大量数据分散在不同的节点,同时每个存储节点还要做副本备份. 而一般的抽象分片方法是, 先将数据映射到一个分片空间,这是多对一的关系,即一个数据分片区间可能有多条数据 再将分片空间映射到物理node,这也是多对一的关系,即一个物理node对应多个分片空间 具体到实现,通过hash进行分片是比较常见方式,而常见的hash方法是: round robin,hash取模,即通过取模将数据分散到各个node,这种方法跳过了分片空间,数据直接映射到了物理no…
转载自: 你需要知道的 16 个 Linux 服务器监控命令 如果你想知道你的服务器正在做干什么,你就需要了解一些基本的命令,一旦你精通了这些命令,那你就是一个 专业的 Linux 系统管理员. 有些 Linux 发行版会提供 GUI 程序来进行系统的监控,例如 SUSE Linux 就有一个非常棒而且专业的工具 YaST,KDE 的 KDE System Guard 同样很出色.当然,要使用这些工具,你必须在服务器跟前进行操作,而且这些 GUI 的程序占用了很多系统资源,所以说,尽管 GUI…
转载地址:http://www.cnblogs.com/Coda/p/4346151.html Java知多少(8)类库及其组织结构 Java 官方为开发者提供了很多功能强大的类,这些类被分别放在各个包中,随JDK一起发布,称为Java类库或Java API. API(Application Programming Interface, 应用程序编程接口)是一个通用概念. 例 如我编写了一个类,可以获取计算机的各种硬件信息,它很强大很稳定,如果你的项目也需要这样一个功能,那么你就无需再自己编写代…
[知乎Live]狼叔:如何正确的学习Node.js 作者:狼叔:i5ting 原文链接:https://i5ting.github.io/How-to-learn-node-correctly/…
在校期间大家都写过不少程序,比如写个hello world服务类,然后本地调用下,如下所示.这些程序的特点是服务消费方和服务提供方是本地调用关系. 而一旦踏入公司尤其是大型互联网公司就会发现,公司的系统都由成千上万大大小小的服务组成,各服务部署在不同的机器上,由不同的团队负责.这时就会遇到两个问题:1)要搭建一个新服务,免不了需要依赖他人的服务,而现在他人的服务都在远端,怎么调用?2)其它团队要使用我们的服务,我们的服务该怎么发布以便他人调用?下文我们将对这两个问题展开探讨.   public…
转载自http://blog.csdn.net/opennaive/article/details/7532589 2006年的OSDI有两篇google的论文,分别是BigTable和Chubby.Chubby是一个分布式锁服务,基于Paxos算法:BigTable是一个用于管理结构化数据的分布式存储系统,构建在GFS.Chubby.SSTable等google技术之上.相当多的google应用使用了BigTable,比如Google Earth和Google Analytics,因此它和GF…
转自:http://www.cnblogs.com/haippy/archive/2011/12/04/2276064.html 有时间再好好看下整个文章! 说起LevelDb也许您不清楚,但是如果作为IT工程师,不知道下面两位大神级别的工程师,那您的领导估计会Hold不住了:Jeff Dean和Sanjay Ghemawat.这两位是Google公司重量级的工程师,为数甚少的Google Fellow之二. Jeff Dean其人:http://research.google.com/peop…
原文地址:http://www.cnblogs.com/haippy/archive/2011/12/04/2276064.html LevelDb日知录之一:LevelDb 101 说起LevelDb也许您不清楚,但是如果作为IT工程师,不知道下面两位大神级别的工程师,那您的领导估计会Hold不住了:Jeff Dean和Sanjay Ghemawat.这两位是Google公司重量级的工程师,为数甚少的Google Fellow之二. Jeff Dean其人:http://research.go…
说起LevelDb也许您不清楚,但是如果作为IT工程师,不知道下面两位大神级别的工程师,那您的领导估计会Hold不住了:Jeff Dean和Sanjay Ghemawat.这两位是Google公司重量级的工程师,为数甚少的Google Fellow之二. Jeff Dean其人:http://research.google.com/people/jeff/index.html,Google大规模分布式平台Bigtable和MapReduce主要设计和实现者. Sanjay Ghemawat其人:…
LevelDb本质上是一套存储系统以及在这套存储系统上提供的一些操作接口.为了便于理解整个系统及其处理流程,我们可以从两个不同的角度来看待LevleDb:静态角度和动态角度.从静态角度,可以假想整个系统正在运行过程中(不断插入删除读取数据),此时我们给LevelDb照相,从照片可以看到之前系统的数据在内存和磁盘中是如何分布的,处于什么状态等:从动态的角度,主要是了解系统是如何写入一条记录,读出一条记录,删除一条记录的,同时也包括除了这些接口操作外的内部操作比如compaction,系统运行时崩溃…
在说LevelDb之前,先认识两位大牛,Jeff Dean和Sanjay Ghemawat,这两位是Google公司重量级的工程师,为数甚少的Google Fellow之二. Jeff Dean其人:http://research.google.com/people/jeff/index.html,Google大规模分布式平台Bigtable和MapReduce主要设计和实现者. Sanjay Ghemawat其人:http://research.google.com/people/sanjay…
LevelDB系列之整体架构   LevelDb本质上是一套存储系统以及在这套存储系统上提供的一些操作接口.为了便于理解整个系统及其处理流程,我们可以从两个不同的角度来看待LevleDb:静态角度和动态角度.从静态角度,可以假想整个系统正在运行过程中(不断插入删除读取数据),此时我们给LevelDb照相,从照片可以看到之前系统的数据在内存和磁盘中是如何分布的,处于什么状态等:从动态的角度,主要是了解系统是如何写入一条记录,读出一条记录,删除一条记录的,同时也包括除了这些接口操作外的内部操作比如c…
LevelDb日知录之一:LevelDb 101 说起LevelDb也许您不清楚,但是如果作为IT工程师,不知道下面两位大神级别的工程师,那您的领导估计会Hold不住了:Jeff Dean和Sanjay Ghemawat.这两位是Google公司重量级的工程师,为数甚少的Google Fellow之二. Jeff Dean其人:http://research.google.com/people/jeff/index.html,Google大规模分布式平台Bigtable和MapReduce主要设…
LevelDb有如下一些特点: 首先,LevelDb是一个持久化存储的KV系统,和Redis这种内存型的KV系统不同,LevelDb不会像Redis一样狂吃内存,而是将大部分数据存储到磁盘上. 其次,LevleDb在存储数据时,是根据记录的key值有序存储的,就是说相邻的key值在存储文件中是依次顺序存储的,而应用可以自定义key大小比较函数,LevleDb会按照用户定义的比较函数依序存储这些记录. 再次,像大多数KV系统一样,LevelDb的操作接口很简单,基本操作包括写记录,读记录以及删除记…
郑重声明:本篇博客是自己学习 Leveldb 实现原理时参考了郎格科技系列博客整理的,原文地址:http://www.samecity.com/blog/Index.asp?SortID=12,只是为了加深印象,本文的配图是自己重新绘制的,大部分内容与原文相似,大家可以浏览原始页面 :-),感兴趣的话可以一起讨论 Leveldb 的实现原理! LevelDb日知录之一:LevelDb 101 说起LevelDb也许您不清楚,但是如果作为IT工程师,不知道下面两位大神级别的工程师,那您的领导估计会…
[LevelDB 整体架构]     从图中可以看出,构成LevelDb静态结构的包括六个主要部分:内存中的MemTable和Immutable MemTable以及磁盘上的几种主要文件:Current文件,Manifest文件,log文件以及SSTable文件.当然,LevelDb除了这六个主要部分还有一些辅助的文件,但是以上六个文件和数据结构是LevelDb的主体构成元素. LevelDb的Log文件和Memtable与Bigtable论文中介绍的是一致的,当应用写入一条Key:Value记…
郑重声明:本篇博客是自己学习 Leveldb 实现原理时参考了郎格科技系列博客整理的,原文地址:http://www.samecity.com/blog/Index.asp?SortID=12,只是为了加深印象,本文的配图是自己重新绘制的,大部分内容与原文相似,大家可以浏览原始页面 :-),感兴趣的话可以一起讨论 Leveldb 的实现原理! LevelDb日知录之一:LevelDb 101 说起LevelDb也许您不清楚,但是如果作为IT工程师,不知道下面两位大神级别的工程师,那您的领导估计会…
郑重声明:本篇博客是自己学习 Leveldb 实现原理时参考了郎格科技系列博客整理的,原文地址:http://www.samecity.com/blog/Index.asp?SortID=12,只是为了加深印象,本文的配图是自己重新绘制的,大部分内容与原文相似,大家可以浏览原始页面 :-),感兴趣的话可以一起讨论 Leveldb 的实现原理! LevelDb日知录之一:LevelDb 101 说起LevelDb也许您不清楚,但是如果作为IT工程师,不知道下面两位大神级别的工程师,那您的领导估计会…
转自http://www.cnblogs.com/haippy/archive/2011/12/04/2276064.html LevelDb日知录之一:LevelDb 101 说起LevelDb也许您不清楚,但是如果作为IT工程师,不知道下面两位大神级别的工程师,那您的领导估计会Hold不住了:Jeff Dean和Sanjay Ghemawat.这两位是Google公司重量级的工程师,为数甚少的Google Fellow之二. Jeff Dean其人:http://research.googl…