题目连接:uva 10056 - What is the Probability ? 题目大意:给出n和p以及m,表示有n个人在丢色子, 谁先丢到某个值就表示胜利,每个人丢到的胜利数值的概率都为p,问第m个人获胜概率. 解题思路:因为n个人可以轮流丢色子,所以要自己定一个下限,而且以为人数比较多,每次并不需要将m以外的人都考虑进去,可以默认为没有丢到胜利的数值. #include <stdio.h> const double tmp = 1e-7; int main () { int cas,…
UVA10056 - What is the Probability ? (概率) 题目链接 题目大意:有n个人玩游戏,一直到一个人胜出之后游戏就能够结束,要不然就一直从第1个到第n个循环进行,没人一轮,给出每一个人胜出的概率为p,问第i个人胜利的概率. 解题思路:第i个人要胜利.那么就可能在第一轮胜利.也可能在第i轮胜利,那么胜利的概率就是q = 1 - p;概率 = q^(i - 1)∗p ∗ (q^n)^0 + q^(i - 1) ∗ p ∗ (q^n)^1 + ...+q^(i - 1)…
option=com_onlinejudge&Itemid=8&page=show_problem&problem=2321">题目链接:uva 11346 - Probability 题目大意:给定x.y的范围.以及s.问说在该范围内选取一点.和x,y轴形成图形的面积大于s的概率. 解题思路:首先达到方程xy ≥ s,即y = s / x. watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQva2VzaHVhaTE5OTQwN…
题意:给出a和b,表示在直角坐标系上的x=[-a,a] 和 y=[-b,b]的这样一块矩形区域.给出一个数s,问在矩形内随机选择一个点p=(x,y),则(0.0)和p点组成的矩形面积大于s的概率是多少? 思路: 由于4个象限上的区域是一样的,所以只需要在第一象限上求概率即可.可以根据面积的大小来求概率. s可能很小,那么p点在任意地方都是满足要求的,所以概率1.如果a*b<=s,那么p点怎么选都不可能大于s,所以概率0. 求出x*y<=s的部分,这部分是不满足要求的,1减去这部分面积占a*b的…
Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Academia.edu) ADDITIONAL PRACTICE FOR THE FINAL PROBLEM 1 A box contains 8 dark chocolates, 8 milk chocolates, and 8 white chocolates. (It’s amazing how t…
Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Academia.edu) Summary Zeros and Ones: Sum of a sample with replacement $S$ is the number of successes: $n$ independent trials, chance of success on a sing…
Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Academia.edu) Summary Standard Error The standard error of a random variable $X$ is defined by $$SE(X)=\sqrt{E((X-E(X))^2)}$$ $SE$ measures the rough size…
Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Academia.edu) Summary Law of Large Numbers As the number of trials increases, the chance that the proportion of successes is in the range $$p\pm\text{a fi…
Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Academia.edu) PRACTICE PROBLEMS FOR THE MIDTERM PROBLEM 1 In a group of 5 high school students, 2 are in 9th grade, 2 are in 10th grade, and 1 is in 12th…
Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Academia.edu) Summary Independent $$P(A\cap B)=P(A)\cdot P(B)$$ Binomial Distribution $$C_{n}^{k}\cdot p^k\cdot(1-p)^{n-k}$$ R function: dbinom(k, n, p) U…