# coding: utf-8 import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_data #print("hello") #载入数据集mnist = input_data.read_data_sets("F:\\TensorflowProject\\MNIST_data",one_hot=True) #每个批次的大小,训练时一次100张放入神经网络中训练batc…
TensorFlow之单层(全连接层)实现手写数字识别训练及测试实例: import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data FLAGS = tf.app.flags.FLAGS tf.app.flags.DEFINE_integer('is_train',1,'指定程序是预测还是训练') def full_connected(): # 获取真实的数据 mnist = input_da…
# coding: utf-8import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_data #print("hello") #载入数据集mnist = input_data.read_data_sets("F:\\TensorflowProject\\MNIST_data",one_hot=True) #每个批次的大小,训练时一次100张放入神经网络中训练batch…
import tensorflow as tf import numpy as np # const = tf.constant(2.0, name='const') # b = tf.placeholder(tf.float32, [None, 1], name='b') # # b = tf.Variable(2.0, dtype=tf.float32, name='b') # c = tf.Variable(1.0, dtype=tf.float32, name='c') # # d =…
https://www.kaggle.com/kakauandme/tensorflow-deep-nn 本人只是负责将这个kernels的代码整理了一遍,具体还是请看原链接 import numpy as np import pandas as pd import tensorflow # settings LEARNING_RATE = 1e-4 # set to 20000 on local environment to get 0.99 accuracy TRAINING_ITERATI…
MNIST数据集:包含数字0-9的灰度图, 图片size为28x28.训练样本:55000,测试样本:10000,验证集:5000…
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("F:\TensorflowProject\MNIST_data",one_hot=True) #每个批次大小 batch_size = 100 #计算一共有多少个批次 n_batch = mnist.train.num_examples //batch_…
http://www.jianshu.com/p/4195577585e6 基于tensorflow的MNIST手写字识别(一)--白话卷积神经网络模型 基于tensorflow的MNIST手写数字识别(二)--入门篇 基于tensorflow的MNIST手写数字识别(三)--神经网络篇 一.本文的意义 因为谷歌官方其实已经写了MNIST入门和深入两篇教程了,那我写这些文章又是为什么呢,只是抄袭?那倒并不是,更准确的说应该是笔记吧,然后用更通俗的语言来解释,并且补充更多,官方文章中没有详细展开的…
Tensorflow2.0-mnist手写数字识别示例   读书不觉春已深,一寸光阴一寸金. 简介:通过CNN 卷积神经网络训练后识别出手写图片,测试图片mnist数据集中的0.1.2.4.                   一.mnist数据集准备 虽然可以通过代码自动下载数据集,但是mnist 数据集国内下载不稳定,会出现[Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/mn…
通过: 手写数字识别  ----卷积神经网络模型官方案例详解(基于Tensorflow,Python) 手写数字识别  ----Softmax回归模型官方案例详解(基于Tensorflow,Python) 运行程序后得的四个文件,再通过手写的图片判断识别概率 代码: import numpy as np import tensorflow as tf from flask import Flask, jsonify, render_template, request import numpy a…