发表时间:(2019年4月) IF:3.95 单位: 维也纳医科大学: 欧洲生物信息研究所(EMBL-EBI): 分子病理学研究所: 奥地利科学院分子生物技术研究所: Gregor Mendel分子植物生物学研究所. 对象:质谱无标记定量结果 技术:聚类分析 一. 概述:(用精炼的语言描述文章的整体思路及结果) 本文选择四个不同的数据集,分为基于谱图数计数和基于峰值强度计数的无标记定量两种情况,对谱图进行聚类算法分析,提高了低丰度蛋白的可检测性,并开发了可直接使用的聚类方法的PD节点. 二. 研…
文献名:Comparing Data-Independent Acquisition and Parallel Reaction Monitoring in Their Abilities To Differentiate High-Density Lipoprotein Subclasses(比较DIA和PRM区分高密度脂蛋白亚类的能力) 期刊名:Journal of Proteome Research 发表时间:2019年11月 IF:3.78 单位: 圣保罗大学 Universidade…
目录: 1.问题描述 2.问题转化 3.划分准则 4.总结 1.问题描述 谱聚类(Spectral Clustering, SC)是一种基于图论的聚类方法——将带权无向图划分为两个或两个以上的最优子图(sub-Graph),使子图内部尽量相似,而子图间距离尽量距离较远,以达到常见的聚类的目的. 对于图的相关定义如下: 对于无向图G = (V,E),V表示顶点集合,即样本集合,即一个顶点为一个样本:E表示边集合. 设样本数为n,即顶点数为n. 权重矩阵:W,为n*n的矩阵,其值wi,j为各边的权值…
期刊名:MCP 发表时间:(2020年4月) IF:4.828 单位:Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego 物种:人 技术:LC-MS/MS Tandem Mass Spectrometry; label free quantitation 一. 概述:(用精炼的语言描述文章的整体思路及结果) 本研究以人iPSC神经元合成的外泌体为实验材料,进行LC-MS…
文献名:Quantitative Proteomics of Enriched Esophageal and Gut Tissues from the Human Blood Fluke Schistosoma mansoni Pinpoints Secreted Proteins for Vaccine Development(从人类血吸虫曼氏血吸虫中富集的食道和肠道组织的定量蛋白质组学确定了用于疫苗开发的分泌蛋白) 期刊名:Journal of Proteome Research 发表时间:…
文献名:Fast and accurate bacterial species identification in urine specimens using LC-MS/MS mass spectrometry and machine learning(利用质谱技术和机器学习模型在尿液样本中快速准确地进行菌种鉴定) doi: 10.1074/mcp.TIR119.001559 期刊名:Mol Cell Proteomics 作者:Florence Roux-Dalvai 通讯作者:Arnaud…
文献名:Multi-batch TMT reveals false positives, batch effects and missing values (多批次TMT定量方法中对假阳性率,批次效应,以及缺失值的研究) 期刊名:Molecular & Cellular Proteomics DOI:10.1074/mcp.RA119.001472 Online:https://www.mcponline.org/content/early/2019/07/22/mcp.RA119.001472…
期刊名:Molecular & Cellular Proteomics 发表时间:(2019年12月) IF:4.828 单位: 朱拉隆功大学 费城威斯塔研究所 物种:人 技术:de novo从头测序,深度学习 一. 概述: 该研究开发了一种基于深度学习的肽段从头测序框架SMSNet,在保持良好的识别覆盖率的同时,氨基酸准确度能达到95%以上.SMSNet揭示了超过10000个以前未分类的人类白细胞抗原(HLA)和磷酸肽,并结合数据库搜索方法,将肽鉴定的覆盖范围扩大了近30%. 二. 研究背景:…
转自:http://www.cnblogs.com/wentingtu/archive/2011/12/22/2297426.html 如果说 K-means 和 GMM 这些聚类的方法是古代流行的算法的话,那么这次要讲的 Spectral Clustering 就可以算是现代流行的算法了,中文通常称为“谱聚类”.由于使用的矩阵的细微差别,谱聚类实际上可以说是一“类”算法. Spectral Clustering 和传统的聚类方法(例如 K-means)比起来有不少优点: 和 K-medoids…
转:http://blog.pluskid.org/?p=287 如果说 K-means 和 GMM 这些聚类的方法是古代流行的算法的话,那么这次要讲的 Spectral Clustering 就可以算是现代流行的算法了,中文通常称为“谱聚类”.由于使用的矩阵的细微差别,谱聚类实际上可以说是一“类”算法. Spectral Clustering 和传统的聚类方法(例如 K-means)比起来有不少优点: 和 K-medoids 类似,Spectral Clustering 只需要数据之间的相似度…