把Spark SQL的metadata存储到mysql】的更多相关文章

1:安装配置mysql yum install mysql mysql-server service mysqld start mysqladmin -u root  password newpassword mysql -u root -p 登录mysql mysql>GRANT ALL PRIVILEGES ON *.* TO 'root'@'%'WITH GRANT OPTION 有时候上面语句不行,换这个GRANT ALL PRIVILEGES ON *.* TO 'root'@'%' …
本文主要介绍如何为 spark sql 的 metastore 配置成 mysql . spark 的版本 2.4.0 版本 hive script 版本为 hive 1.2.2 mysql 为 5.7.18 mysql 的安装部署就不在这里介绍了. 首先为 mysql 的root 用户设置密码 mysql -uroot > set password= password('mysql'); 设置mysql 允许其他机器登录 > GRANT ALL PRIVILEGES ON *.* TO 'r…
Spark SQL, DataFrames and Datasets Guide Overview SQL Datasets and DataFrames 开始入门 起始点: SparkSession 创建 DataFrames 无类型的Dataset操作 (aka DataFrame 操作) Running SQL Queries Programmatically 全局临时视图 创建Datasets RDD的互操作性 使用反射推断Schema 以编程的方式指定Schema Aggregatio…
概述 Spark SQL是用于结构化数据处理的Spark模块.它提供了一个称为DataFrames的编程抽象,也可以作为分布式SQL查询引擎. Spark SQL也可用于从现有的Hive安装中读取数据.有关如何配置此功能的更多信息,请参阅Hive Tables部分. DataFrames DataFrame是组织成命名列的数据的分布式集合.它在概念上等同于关系数据库中的表或R / Python中的数据框架,但是在更加优化的范围内.DataFrames可以从各种来源构建,例如:结构化数据文件,Hi…
Spark SQL 1.3 参考官方文档:Spark SQL and DataFrame Guide 概览介绍参考:平易近人.兼容并蓄——Spark SQL 1.3.0概览 DataFrame提供了一条联结所有主流数据源并自动转化为可并行处理格式的渠道,通过它Spark能取悦大数据生态链上的所有玩家,无论是善用R的数据科学家,惯用SQL的商业分析师,还是在意效率和实时性的统计工程师. 以一个常见的场景 -- 日志解析为例,有时我们需要用到一些额外的结构化数据(比如做IP和地址的映射),通常这样的…
Spark SQL是Spark中用于结构化数据处理的组件. Spark SQL可以从Hive中读取数据. 执行结果是Dataset/DataFrame. DataFrame是一个分布式数据容器.然而DataFrame更像传统数据库的二维表格,除了数据以外,还掌握数据的结构信息,即schema.同时,与Hive类似,DataFrame也支持嵌套数据类型(struct.array和map).从API易用性的角度上 看,DataFrame API提供的是一套高层的关系操作,比函数式的RDD API要更…
1,JSON数据集 Spark SQL可以自动推断JSON数据集的模式,并将其作为一个Dataset[Row].这个转换可以SparkSession.read.json()在一个Dataset[String]或者一个JSON文件上完成. 请注意,作为json文件提供的文件不是典型的JSON文件.每行必须包含一个单独的,独立的有效JSON对象.有关更多信息,请参阅 JSON行文本格式,也称为换行符分隔的JSON. 对于常规的多行JSON文件,请将该multiLine选项设置为true.例如下面的例…
Spark版本:1.6.2 概览 Spark SQL用于处理结构化数据,与Spark RDD API不同,它提供更多关于数据结构信息和计算任务运行信息的接口,Spark SQL内部使用这些额外的信息完成特殊优化.可以通过SQL.DataFrames API.Datasets API与Spark SQL进行交互,无论使用何种方式,SparkSQL使用统一的执行引擎记性处理.用户可以根据自己喜好,在不同API中选择合适的进行处理.本章中所有用例均可以在spark-shell.pyspark shel…
在最新的master分支上官方提供了Spark JDBC外部数据源的实现,先尝为快. 通过spark-shell测试: import org.apache.spark.sql.SQLContext val sqlContext = new SQLContext(sc) import sqlContext._ val TBLS_JDBC_DDL = s""" |CREATE TEMPORARY TABLE spark_tbls |USING org.apache.spark.s…
用户:     方便快速从不同的数据源(json.parquet.rdbms),经过混合处理(json join parquet),     再将处理结果以特定的格式(json.parquet)写回到指定的系统(HDFS.S3)上去   Spark SQL 1.2 ==> 外部数据源API   外部数据源的目的 1)开发人员:是否需要把代码合并到spark中????     weibo     --jars   2)用户     读:spark.read.format(format)      …