EM公式推导】的更多相关文章

纯手写,字很丑,人也很丑.. E步公式是怎么来的呢?推导步骤如下, EM算法核心思想是先给定初始θ,求样本X,和隐变量z的期望(实际上是个函数),可以画一个曲线,M步:然后不断滑动θ,找到使得期望最大值时候的新θ,不断迭代. 下面的证明过程利用了jensen不等式,就是一个凸函数的性质. 大农村,连像样的张纸都找不到..我要回家!><…
1. 通过一个简单的例子直观上理解EM的核心思想 0x1: 问题背景 假设现在有两枚硬币Coin_a和Coin_b,随机抛掷后正面朝上/反面朝上的概率分别是 Coin_a:P1:-P1 Coin_b:P2:-P2 为了估计这个概率(我们事先是不知道这两枚硬币正面朝上的概率的),我们需要通过实验法来进行最大似然估计,每次取一枚硬币,连掷5下,记录下结果 硬币 结果 统计 Coin_a 正 正 反 正 反 3正-2反 Coin_b 反 反 正 正 反 2正-3反 Coin_a 正 反 反 反 反 1…
一.概述 概率模型有时既含有观测变量,又含有隐变量,如果概率模型的变量都是观测变量,那么给定数据,可以直接利用极大似然估计法或者贝叶斯估计法估计模型参数.但是,当模型同时又含有隐变量时,就不能简单地使用这些方法.EM算法适用于带有隐变量的概率模型的参数估计,利用极大似然估计法逐步迭代求解. 二.jensen不等式   是区间 上的凸函数,则对任意的 ,有不等式:   即: E[f(X)] ≥ f(E(X))  ,因为(x1+x2+...+xn)/n=E(X),同理可得E(f(X)).当x1=x2…
EM算法即期望最大化(Expection Maximization)算法,是一种最优化算法,在机器学习领域用来求解含有隐变量的模型的最大似然问题.最大似然是一种求解模型参数的方法,顾名思义,在给定一组数据时,将似然表示为参数的函数,然后对此似然函数最大化即可求出参数,此参数对应原问题的最大似然解.对于简单的问题,我们通过将似然函数对参数求导并令导数等于零即可求出参数的解析解或隐式解.然而,有一类模型,他们的结构中包含隐变量(如混合高斯模型.混合伯努利模型.隐马尔科夫模型等),无法通过对似然函数直…
转载请注明出处: http://www.cnblogs.com/gufeiyang 首先考虑这么一个问题.操场东边有100个男生,他们的身高符合高斯分布.操场西边有100个女生,她们的身高也符合高斯分布. 如果告诉了男生的身高,我们很容易用极大似然估计求出正态分布的参数. 同理,给出了女生的身高,我们也很容易得到高斯分布的参数. 接下来事情发生了, 男生跑入女生队伍中, 然后统计了200个人的身高,但是却不知道每个身高是男的还是女生的. 这样的话就很纠结了. 如果我们要是知道了每个人的性别改多好…
GMM即高斯混合模型,下面根据EM模型从理论公式推导GMM: 随机变量X是有K个高斯分布混合而成,取各个高斯分布的概率为φ1,φ2,... ,φK,第i个高斯分布的均值为μi,方差为Σi.若观测到随机变量X的一系列样本x1,x2,...,xn,试估计参数φ,μ,Σ. E-step M-step 将多项分布和高斯分布的参数带入EM模型: 对均值求偏导:   令上式等于0,解的均值: 高斯分布的方差:求偏导,等于0: 多项分布的参数: 得到 拉格朗日乘子法: 由于多项分布的概率和为1,建立拉格朗日方…
极大似然估计 我们先从极大似然估计说起,来考虑这样的一个问题,在给定的一组样本x1,x2······xn中,已知它们来自于高斯分布N(u, σ),那么我们来试试估计参数u,σ. 首先,对于参数估计的方法主要有矩估计和极大似然估计,我们采用极大似然估计,高斯分布的概率密度函数如下: 我们可以将x1,x2,······,xn带入上述式子,得: 接下来,我们对L(x)两边去对数,得到: 于是,我们得到了l(x)的表达式,下面需要对其计算极大值: 通过对目标函数的参数u,σ分别求偏导,很容易得到: 对于…
一.scikit-learn概述 1.sklearn模型   sklearn全称是scikit-learn,它是一个基于Python的机器学习类库,主要建立在NumPy.Pandas.SciPy和Matplotlib等类库之上,基本上覆盖了常见了分类.回归.聚类.降维.模型选择和预处理模块. 2.sklearn源码 下图是sklearn在GitHub上的源代码,编程语言主要包括:91.4%的Python,6.5%的Cython,1.3%的C++和0.8%的Other.如下所示: 二.模型选择和预…
使用相对单位em注意点 1.浏览器默认字体是16px,即1em = 16px,根元素设置如下 html{ font-size: 100%; /* WinIE text resize correction */ } body{ font-size: 1em; } 2.如果元素自身没有设置字体大小,那么元素自身上的所有属性值如“boder.width.height.padding.margin.line-height”等值,我们都可以按下面的公式来计算 1 ÷ 父元素的font-size × 需要转…
由css reset想到的深入理解margin及em的含义 原文地址:http://www.ymblog.net/content_189.html 经常看到这样语句,*{ margin:0px;padding:0px; },用起来很方便吧?由于学习前端的门槛低,我一直找不到区别于那些用DW的前端的所在点,我总觉得我是用记事本写代码的,我的水平及理解绝对比那些用DW的人呀更胜一筹.但区别在哪里呢?最近,我似乎明白了,拿css来说,前面的很长一段时间,我都是在横向学习css,不断的学习新的东西,制作…