构造R^n子空间W一组正交基的算法:格拉姆-施密特方法.…
这一章节我们主要讨论定义在R^n空间上的向量之间的关系,而这个关系概括来讲其实就是正交,然后引入正交投影.最佳逼近定理等,这些概念将为我们在求无解的线性方程组Ax=b的最优近似解打下基石. 正交性: 先举个最简单的例子,在平面中,两个二维向量的点乘如果为0,那么我们可判定两个向量互相垂直,那么实际上这两个向量就是R^2向量空间上的一组正交向量. 下面推广到R^n向量空间上,给出正交性的定义: 正交集: 给定向量集合S,当S中任意两个元素都相互正交,我们称S是一个正交集. 基的一个概念其实表征一个…
两个定理非常的简单显然,似乎是在证明矩阵代数中的基本运算律.但是它为后面用“线性变换”理解矩阵-向量积Ax奠定了理论基础. 结合之前我们讨论过的矩阵和向量的积Ax的性质,下面我们就可以引入线性变换了. 由于矩阵A和向量x的乘积的性质与线性变换的定义有着密切的联系,我们能够进一步的探索矩阵A在线性变换中扮演着怎样的角色. 有了线性变换和标准矩阵的概念,我们就有了强有力的工具用来表示实际问题中一系列诸如拉伸.伸缩的线性变换了.…
在线性代数中一个非常重要的概念就是向量空间R^n,这一章节将主要讨论向量空间的一系列性质. 一个向量空间是一些向量元素构成的非空集合V,需要满足如下公理: 向量空间V的子空间H需要满足如下三个条件: 两个定理均在阐述如何构成子空间,其证明也只需要简单的证明构造出的子空间满足子空间H需要满足的三个条件即可.…
最小二乘问题: 结合之前给出向量空间中的正交.子空间W.正交投影.正交分解定理.最佳逼近原理,这里就可以比较圆满的解决最小二乘问题了. 首先我们得说明一下问题本身,就是在生产实践过程中,对于巨型线性方程组Ax=b,可能是无解的,但是我们就是迫切的需要一个解,满足这个解是方程的最近似解. 下面我们综合之前给出了一系列概念.定理,来解决这个问题. 首先我们需要给出最近似解的定义: 我们需要站在新的角度来解读线性方程组Ax=b,这样能够帮助我们更好的解决问题. 上文已经给出最小二乘问题最一般化的解法,…
基于之前章节的铺垫,我们这里能够很容易的引出特征向量和特征值的概念. 首先我们知道n x n矩阵的A和n维向量v的乘积会得到一个n维的向量,那么现在我们发现,经过计算u=Av,得到的向量u是和v共线的,就是说向量v乘以矩阵A得到的向量u相对于向量v“拉伸”了,即满足如下的一个式子: Av =λv=u 那么这里我们称λ是矩阵A的特征值,v是对应特征值的特征向量. 严谨定义如下: 定理1: 三角矩阵的主对角线的元素是其特征值. 在证明之前,我们首先需要对定义做更充分的挖掘,特征向量x不能是零向量,我…
计算线性方程组唯一解的克拉默法则:…
承接上一篇文章对行列式的引入,这篇文章将进一步记录关于行列式的有关内容,包括如下的几个方面: (1)行列式3个初等变换的证明. (2)转置行列式与原行列式相等的证明. (3)定理det(AB) = det(A)det(B)的证明. (4)基于行列式初等变换的范德蒙德行列式的证明. 首先值得说明的是,先前我们介绍矩阵的时候,并没有给出矩阵行变换的相关证明,其实按道理讲它的根源是出自于这里的.行列式和矩阵是有着紧密的联系的,想在这本书中就是基于矩阵的方法来完成对行列式3个初等变换的证明的. 行列式3…
这一章节开始介绍线性代数中另外一个基本概念——行列式. 其实与矩阵类似,行列式也是作为简化表述多项式的一种工具,关于行列式的历史渊源,有如下的介绍. 在介绍逆矩阵的时候,我们曾提及二阶矩阵有一个基于矩阵A对应行列式|A|和伴随矩阵的计算方法,当时由于没有引入行列式就暂且搁置,今天在这里将给出详细的证明过程. 关于行列式.伴随矩阵以及余子式.代数余子式等基本概念,这里不做累述. 另外由于MathType编辑器的符号所限,这里将证明过程手写在黑板上然后拍下图片. 值得注意的是,这种基于矩阵对应行列式…
分块矩阵的概念: 在矩阵的实际应用中,为了形式的更加简化我们将一个较大的矩阵的内部进行一定的划分,使之成为几个小矩阵,然后在表大矩阵的时候,矩阵的内部元素就用小矩阵代替. 进行了这一步简化,我们就要分块后的矩阵满足怎样的运算规律. 分块矩阵的运算: 分块矩阵的标量加减:很容易想到,只要大矩阵的维度相同,划分方法相同,两个分块矩阵的加减就是对应小矩阵的加减. 分块矩阵的乘法:其实在引出矩阵乘法的时候,我们就能够提供这样一种观点,基于自然的矩阵(列向量的表示形式)和R^n向量的乘法,我们将这里的R^…