函数不能嵌套定义,但能嵌套调用(在调用一个函数的过程中再调用另一个函数) 函数间接或直接调用自己,称为递归调用  汉诺塔问题 思想:简化为较为简单的问题 n=2 较为复杂的问题,采用数学归纳方法分析 递归什么时候终止:只剩一个圆盘的情况    A--到--B 费波纳茨数列 根据最大公约数的如下3条性质,采用递归法编写计算最大公约数的函数Gcd(),在主函数中调用该函数计算并输出从键盘任意输入的两正整数的最大公约数.性质1  如果a>b,则a和b与a-b和b的最大公约数相同,即Gcd(a, b)…
用C语言实现汉诺塔自动递归演示程序 程序实现效果 1.变界面大小依照输入递归数改变. 2.汉诺塔自动移动演示. 3.采用gotoxy实现流畅刷新. 4.保留文字显示递归流程 程序展示及实现 github地址:https://github.com/404name/C-game 0.主体思路 输入要递归的汉诺塔数目,在原来的汉诺塔基础上新增move_play函数展示递归,用next数组存储每种移动状态.对应的从哪到哪可自动对应相应的移动方式自动移动. 1.变界面大小依照输入递归数改变 init函数按…
C语言解决汉诺塔问题 汉诺塔是典型的递归调用问题: hanoi简介:印度教的主神梵天在创造世界的时候,在其中一根针上从下到上地穿好了由大到小的64片金片,这就是所谓的汉诺塔.不论白天黑夜,总有一个僧侣在按照下面的法则移动这些金片:一次只移动一片,不管在哪根针上,小片必须在大片上面.僧侣们预言,当所有的金片都从梵天穿好的那根针上移到另外一根针上时,世界就将在一声霹雳中消灭,而梵塔.庙宇和众生也都将同归于尽. --图片来源于百度百科 A,B,C三个柱子,当A柱子上只有一个盘子时直接将该盘子从A柱子移…
递归:汉诺塔 让编程改变世界 Change the world by program 似乎谈到递归算法就要拿汉诺塔来举例,没办法,因为小甲鱼小时候太笨了,这个游戏老是玩不过关,好不容易在自学编程的时候,也卡在这里好长一段时间,所以现在老爱拿汉诺塔来说事儿. 一位法国数学家曾编写过一个印度的古老传说:说的是,在世界中心贝拿勒斯的圣庙里边,有一块黄铜板,上边插着三根宝针.印度教的主神梵天在创造世界的时候,在其中一根针上从下到上地穿好了由大到小的64片金片,这就是所谓的汉诺塔.然后不论白天或者黑夜,总…
之前遇见这个问题,非常费劲地理解了,并写出代码,然后过段时间,再遇见这个问题,又卡住了,如此反反复复两三次,才发现自己对递归的理解依然很肤浅.今天无聊,重温<算法:c语言实现>一书,又遇见了这个问题,心头一紧,担心要费些时间才能写出代码,没想到的是,再理解了书中对递归的定义,蒙住源代码动手写,发现很快就写出来了,甚至都没有费力去模拟整个汉诺塔移动过程,只是根据递归的要领(数学归纳法)分析了一下问题,便得出了一个递归形式,照此写代码,竟然没错.由此也醒悟到,很多时候,用递归写代码并不难,但却常常…
汉诺塔的传说 法国数学家爱德华·卢卡斯曾编写过一个印度的古老传说:在世界中心贝拿勒斯(在印度北部)的圣庙里,一块黄铜板上插着三根宝石针.印度教的主神梵天在创造世界的时候,在其中一根针上从下到上地穿好了由大到小的64片金片,这就是所谓的汉诺塔.不论白天黑夜,总有一个僧侣在按照下面的法则移动这些金片:一次只移动一片,不管在哪根针上,小片必须在大片上面.僧侣们预言,当所有的金片都从梵天穿好的那根针上移到另外一根针上时,世界就将在一声霹雳中消灭,而梵塔.庙宇和众生也都将同归于尽. 不管这个传说的可信度有…
汉诺塔问题 汉诺塔的移动可以用递归函数非常简单地实现.请编写move(n, a, b, c)函数,它接收参数n,表示3个柱子A.B.C中第1个柱子A的盘子数量,然后打印出把所有盘子从A借助B移动到C的方法. 汉诺塔问题的实现关键是理解递归的本质.递归问题的关键个人认为是,重目的而略过程.利用递归,我们不需要了解搬移盘子的过程.只需要知道,我们的目的是按照顺序和规则把盘子从A柱放到C柱.于是编写一个函数,move(n, a, b, c).可以这样理解:move(盘子数量, 起点, 缓冲区, 终点)…
程序调用自身的编程技巧称为递归. //汉诺塔的游戏,n为圆盘编号数量,编号,a,b,c代表的是三个柱子 var hanio=function(n,a,b,c){     if(n>0){         hanio(n-1,a,c,b);         document.writeln('Move n '+n+" form "+a+' to '+c);         document.write("<br />");         hanio…
# 汉诺塔 a = "A" b = "B" c = "C" def hano(a, b, c, n): if n == 1: print("{} --> {}".format(a, c)) if n == 2: print("{} --> {}".format(a, c)) print("{} --> {}".format(a, b)) print("{} -…
汉诺塔 要把A柱子上的盘子移动到C柱子上,在移动过程中可以借助B柱子,但是要求小的盘子在上大的盘子在下. 解题思路: 1.把A柱子上的前N-1个盘子借助C柱子,全部移动到B柱子上(过程暂不考虑),再把第N个盘子由A柱子移动到C柱子上. 那么剩下要移动的盘子在B柱子上了. 2.把B柱子上的前N-2个盘子借助C柱子,全部移动到A柱子上(过程暂不考虑),再把第N-1个盘子由B柱子移动到C柱子上. 重复上面的两个步骤即可把A柱子上的盘子全部移动到C柱子上. 算法实现: #include <stdio.h…