dataframe常用处理】的更多相关文章

获取列名:data.columns.values.tolist() 复制列: out['serial_number'] = out['2']这样就是新增了一列,复制了‘2’这一列,然后再del out['2]即可这样的形式也可以用于把前面某些列的计算值赋到新的一列 换列名: #给data_app赋上新的列名称data_app.columns = ['user_id', 'hlw_all3', 'vedio_app_time', 'game_app_time', 'read_app_time',…
上节我们简单介绍了Dataframe的定义,这节我们具体来看一下Dataframe的操作 首先,数据框的创建函数为 data.frame( ),参考R语言的帮助文档,我们来了解一下data.frame( )的具体用法: Usage data.frame(..., row.names = NULL, check.rows = FALSE, check.names = TRUE, fix.empty.names = TRUE, stringsAsFactors = default.stringsAs…
spark dataframe派生于RDD类,但是提供了非常强大的数据操作功能.当然主要对类SQL的支持.   在实际工作中会遇到这样的情况,主要是会进行两个数据集的筛选.合并,重新入库.   首先加载数据集,然后在提取数据集的前几行过程中,才找到limit的函数.   而合并就用到union函数,重新入库,就是registerTemple注册成表,再进行写入到HIVE中.   1.union.unionAll.unionByName,row 合并(上下拼接) data_all = data_n…
import numpy as np import pandas as pd This section will walk you(引导你) through the fundamental(基本的) mechanics(方法) of interacting(交互) with the data contained in a Series or DataFrame. -> (引导你去了解基本的数据交互, 通过Series, DataFrame). In the chapters to come, w…
1.条件查询: result = df.query("((a==1 and b=="x") or c/d < 3))" print result 2.遍历 a)根据索引遍历 for idx in df.index: dd = df.loc[idx] print(dd) b)按行遍历 for i in range(0, len(df)): dd = df.iloc[i] print(dd) 3.对某列求均值 # 对“volume”列求均值 result = df…
一.常用链接: 1.Python官网:https://www.python.org/ 2.各种库的whl离线安装包:http://www.lfd.uci.edu/~gohlke/pythonlibs/#scikit-learn 3.数据分析常用库的离线安装包(pip+wheels)(百度云):http://pan.baidu.com/s/1dEMXbfN 密码:bbs2 二.常用库 1.NumPy NumPy是高性能科学计算和数据分析的基础包.部分功能如下: ndarray, 具有矢量算术运算和…
Pandas pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的. Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具. pandas提供了大量能使我们快速便捷地处理数据的函数和方法. >>> from pandas import Series, DataFrame >>> import pandas as pd A.pandas 函数 说明 pd.isnull(series) pd.notnull(ser…
NumPy和Pandas常用库 1.NumPy NumPy是高性能科学计算和数据分析的基础包.部分功能如下: ndarray, 具有矢量算术运算和复杂广播能力的快速且节省空间的多维数组. 用于对整组数据进行快速运算的标准数学函数(无需编写循环). 用于读写磁盘数据的工具以及用于操作内存映射文件的工具. 线性代数.随机数生成以及傅里叶变换功能. 用于集成C.C++.Fortran等语言编写的代码的工具. 首先要导入numpy库:import numpy as np A NumPy函数和属性: 类型…
sparksql是spark中的一个模块,主要用于进行结构化数据的处理,他提供的最核心的编程抽象,就是DataFrame.同时,sparksql还可以作为分布式的sql查询引擎. 最最重要的功能就是从hive中查询数据.     Dataframe可以理解为:以列的形式组织的,分布式的数据集合.     Dataframe可以通过很多来源进行构建,包括:结构化的数据文件.hive中的表.外部的关系型数据库.以及RDD   使用sparksql 首先需要创建一个sqlContext对象,或者是它的…
pandas中的数据结构-DataFrame DataFrame是什么? 表格型的数据结构 DataFrame 是一个表格型的数据类型,每列值类型可以不同 DataFrame 既有行索引.也有列索引 DataFrame 常用于表达二维数据,但可以表达多维数据 DataFrame创建 从字典创建 >>> import pandas as pd >>> frame=pd.DataFrame(data) >>> data={'name':['a','b','…