For an integer n, we call k>=2 a good base of n, if all digits of n base k are 1. Now given a string representing n, you should return the smallest good base of n in string format. Example 1: Input: "13" Output: "3" Explanation: 13…
For an integer n, we call k>=2 a good base of n, if all digits of n base k are 1. Now given a string representing n, you should return the smallest good base of n in string format. Example 1: Input: "13" Output: "3" Explanation: 13…
For an integer n, we call k>=2 a good base of n, if all digits of n base k are 1. Now given a string representing n, you should return the smallest good base of n in string format. Example 1: Input: "13" Output: "3" Explanation: 13…
For an integer n, we call k>=2 a good base of n, if all digits of n base k are 1. Now given a string representing n, you should return the smallest good base of n in string format. Example 1: Input: " Output: " Explanation: . Example 2: Input…
For an integer n, we call k>=2 a good base of n, if all digits of n base k are 1. Now given a string representing n, you should return the smallest good base of n in string format. Example 1: Input: "13" Output: "3" Explanation: 13…
For an integer n, we call k>=2 a good base of n, if all digits of n base k are 1. Now given a string representing n, you should return the smallest good base of n in string format. Example 1: Input: "13" Output: "3" Explanation: 13…
An image is represented by a binary matrix with 0 as a white pixel and 1 as a black pixel. The black pixels are connected, i.e., there is only one black region. Pixels are connected horizontally and vertically. Given the location (x, y) of one of the…
You have k lists of sorted integers in ascending order. Find the smallest range that includes at least one number from each of the k lists. We define the range [a,b] is smaller than range [c,d] if b-a < d-c or a < c if b-a == d-c. Example 1: Input:[…
Given an array A of integers, for each integer A[i] we need to choose either x = -K or x = K, and add x to A[i] (only once). After this process, we have some array B. Return the smallest possible difference between the maximum value of B and the mini…
Given an array A of integers, for each integer A[i] we may choose any x with -K <= x <= K, and add x to A[i]. After this process, we have some array B. Return the smallest possible difference between the maximum value of B and the minimum value of B…