ACM:回溯,八皇后问题,素数环】的更多相关文章

八皇后问题,是一个古老而著名的问题,是回溯算法的典型例题. 其解决办法和我以前发过的[算法之美—Fire Net:www.cnblogs.com/lcw/p/3159414.html]类似 题目:在8X8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行.同一列或同一斜线上,问有多少种摆法. #include <stdio.h> ; //全局变量,统计所有解法 ] ) //判断是否存在危险 { , flag2=, flag3=, flag4=, flag5=; //…
(一)八皇后问题 (1)回溯 #include <iostream> #include <string> #define MAXN 100 using namespace std; int tot = 0, n = 8; int C[MAXN]; void search(int cur) { if(cur == n) ++tot; //递归边界,仅仅要走到了这里.全部皇后必定不冲突 else for(int i = 0; i < n; ++i) { int ok = 1; C…
嗯... 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1016 一道很典型的dfs+回溯: 根据题意首先进行初始化,即第一个位置为1,然后进行dfs,枚举2~n之间的每一个数,如果这个数没被使用并且它和环中上一个数形成素数环,那么就把它加入环中,打上标记,然后继续dfs,最后回溯.当环上的个数正好等于n并且第一个数和最后一个数也能组成素数,则输出,输出时注意格式,很严格! dfs这里还有一个剪枝: 只有n为偶数时才可能形成素数环!因为当n为奇数时…
八皇后问题是十九世纪著名的数学家高斯1850年提出 .以下为python语句的八皇后代码,摘自<Python基础教程>,代码相对于其他语言,来得短小且一次性可以打印出92种结果.同时可以扩展为九皇后,十皇后问题. 问题:在一个8*8棋盘上,每一行放置一个皇后旗子,且它们不冲突.冲突定义:同一列不能有两个皇后,每一个对角线也不能有两个皇后.当然,三个皇后也是不行的,四个也是不行的,凭你的智商应该可以理解吧.    解决方案:回溯与递归 介绍: 1.回溯法 回溯法是一种选优搜索法,按选优条件向前搜…
结合问题说方案,首先先说问题: 八皇后问题:在8X8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行.同一列或同一斜线上,问有多少种摆法. 嗯,这个问题已经被使用各种语言解答一万遍了,大多还是回溯法解决的. 关于回溯算法:个人理解为就是优化的穷举算法,穷举算法是指列出所有的可能情况,而回溯算法则是试探发现问题"剪枝"回退到上个节点,换一条路,能够大大提高求解效率. 具体到8皇后问题上来说,需要考虑以下几点: 1)将8个皇后定义为8行中的相对位置来标识,考虑增…
原创文章,转载请注明:八皇后问题-回溯法(MATLAB) By Lucio.Yang 1.问题描述 八皇后问题是十九世纪著名数学家高斯于1850年提出的.问题是:在8*8的棋盘上摆放8个皇后,使其不能互相攻击,即任意的两个皇后不能处在同意行,同一列,或同意斜线上. 2.matlab代码 function PlaceQueen(row,stack,N)%回溯法放置皇后 if row>N PrintQueen(N,stack);%打印棋盘 else for col=1:N stack(row)=co…
八皇后问题: 把N个皇后,放在N*N的棋盘上面,从第一行往下放,每个皇后占一行,同时,每个皇后不能处在同一列,对角线上,有多少种放置方法. 思路: 典型的回溯问题: 1.当要放置最后一个皇后时候,默认前N-1个皇后已经全部放置好了,那么验证在第N行上的每个位置是否可行,即是否与之前的皇后在同一列或者对角线即可: 2.如果放置的不是最后一个皇后,则回溯.回溯至刚开始放第一个元素时候,然后不断的返回上一层.每一层都认为下一层传递给自己的是正确的信息 def isconflict(state, nx)…
八皇后问题是一个以国际象棋为背景的问题:怎样可以在 8×8 的国际象棋棋盘上放置八个皇后,使得不论什么一个皇后都无法直接吃掉其它的皇后?为了达到此目的.任两个皇后都不能处于同一条横行.纵行或斜线上.現在要統計出全部的可行方案的總數.并且輸出每一種方案皇后擺放的坐標: 代碼詳細解析: #include <iostream> #include <cstdio> #include <cmath> #include <cstring> #include <cs…
八皇后谜题是经典的一个问题,其解法一共有种! 其定义: 首先定义一个8*8的棋盘 我们有八个皇后在手里,目的是把八个都放在棋盘中 位于皇后的水平和垂直方向的棋格不能有其他皇后 位于皇后的斜对角线上的棋格不能有其他皇后 解出能将八个皇后都放在棋盘中的摆法 这个问题通常使用两种方法来求解: 穷举法 回溯法(递归) 本文章通过回溯法来求解,回溯法对比穷举法高效许多,让我们学习如何实现吧! 实现思想: 我们先在棋盘的第0行第1个棋格放下第一个皇后 下一行寻找一个不冲突的棋格放下下一个皇后 循环第2步 如…
八皇后问题:将八个皇后摆在一张8*8的国际象棋棋盘上,使每个皇后都无法吃掉别的皇后,一共有多少种摆法? 两个皇后不能同时在同一行,同一列,和斜对角线的位置上,使用回溯法解决. 从第一行选个位置开始放棋子,第二行从0开始选择满足规则的位置,到第三行发现没有位置可以满足规则,那么就把第二行的棋子向后移动一个可以满足规则的位置,如果没有这个位置,就返回到第一行,将棋子向后移动一个,从头开始,以此类推. 这个同学的博客讲的很通俗易懂 https://www.cnblogs.com/bigmoyan/p/…