用C++实现斐波那契数列】的更多相关文章

using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks; namespace 斐波那契数列求和 { class Program { static void Main(string[] args) { Console.WriteLine()); Console.WriteLine()); Console.WriteLine()…
对于斐波拉契经典问题,我们都非常熟悉,通过递推公式F(n) = F(n - ) + F(n - ),我们可以在线性时间内求出第n项F(n),现在考虑斐波拉契的加强版,我们要求的项数n的范围为int范围内的非负整数,请设计一个高效算法,计算第n项F(n).第一个斐波拉契数为F() = . 给定一个非负整数,请返回斐波拉契数列的第n项,为了防止溢出,请将结果Mod . 斐波拉契数列的计算是一个非常经典的问题,对于小规模的n,很容易用递归的方式来获取,对于稍微大一点的n,为了避免递归调用的开销,可以用…
//斐波那契数列:1,2,3,5,8,13…… //从第3个起的第n个等于前两个之和 //解法1: var n1 = 1,n2 = 2; for(var i=3;i<101;i++){ var reg = n1 + n2; console.log('第'+i+'个为:'+reg); n1 = n2;n2 = reg; } //解法2:开枝散叶,递推到一开始的1或2 // //以n=8 举例 // // 8 // / \ // / \ // / \ // 7 6 // / \ /\ // / \…
一.题目:斐波那契数列 题目:写一个函数,输入n,求斐波那契(Fibonacci)数列的第n项.斐波那契数列的定义如下: 二.效率很低的解法 很多C/C++/C#/Java语言教科书在讲述递归函数的时候,大多都会用Fibonacci作为例子,因此我们会对这种解法烂熟于心: public static long FibonacciRecursively(uint n) { ) { ; } ) { ; } ) + FibonacciRecursively(n - ); } 上述递归的解法有很严重的效…
斐波那契数列: 1,1,2,3,5,8,13,21,34,....     //求斐波那契数列第n项的值 //1,1,2,3,5,8,13,21,34... //1.递归: //缺点:当n过大时,递归深度过深,速度降低 int fib1(int n){ if (n == 1 || n == 2) return 1; return fib1(n - 1) + fib1(n - 2); } //2.非递归: 时间复杂度O(n) int fib2(int n){ if (n == 1 || n ==…
P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请你求出 f(n) mod 1000000007 的值. 输入输出格式 输入格式: ·第 1 行:一个整数 n 输出格式: 第 1 行: f(n) mod 1000000007 的值 输入输出样例 输入样例#1: 5 输出样例#1: 5 输入样例#2: 10 输出样例#2: 55 说明…
递归函数 在函数内部,可以调用其他函数.如果一个函数在内部调用自身本身,这个函数就是递归函数.举个例子,我们来计算阶乘 n! = 1 * 2 * 3 * ... * n,用函数 fact(n)表示,可以看出:fact(n) = n! = 1 * 2 * 3 * ... * (n-1) * n = (n-1)! * n = fact(n-1) * n所以,fact(n)可以表示为 n * fact(n-1),只有n=1时需要特殊处理.于是,fact(n)用递归的方式写出来就是: def fact(…
java编程基础--斐波那契数列 问题描述:一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 思路:可能出现的情况:(1) n=1 ,一种方法 ;(2)n=2,两种方法;(3)对于第n阶,只能从第n-1阶或者n-2阶跳上,所以得出结论: | 1, (n=1) f(n) =     | 2, (n=2) | f(n-1)+f(n-2) ,(n>2,n为整数) public static void main(String[] args) { int a =2…
对于JS初学者来说,斐波那契数列一直是个头疼的问题,总是理不清思路. 希望看完这篇文章之后会对你有帮助. 什么是斐波那契数列 : 答: 斐波那契数列,又称黄金分割数列.因数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为"兔子数列".  指的是这样一个数列:0.1.1.2.3.5.8.13.21.34.-- 题目:有个人想知道,一年之内一对兔子能繁殖多少对?于是就筑了一道围墙把一对兔子关在里面.已知一对兔子每个月可以生一对小兔子,而一对…
斐波拉契数列是指这样一个数列: F(1)=1; F(2)=1; F(n)=F(n-1)+F(n); public class Solution { public int Fibonacci(int n) { int preNum = 1; int prePreNum = 0; int result = 0; if(n ==0){ return 0; } if(n == 1){ return 1; } for(int i = 2; i <= n; i ++){ result = preNum +…