本文是对Arthur Juliani在Medium平台发布的强化学习系列教程的个人中文翻译.(This article is my personal translation for the tutorial written and posted by Arthur Juliani on Medium.com.) 原文地址(URL for original article):https://medium.com/emergent-future/simple-reinforcement-learni…
在强化学习(十一) Prioritized Replay DQN中,我们讨论了对DQN的经验回放池按权重采样来优化DQN算法的方法,本文讨论另一种优化方法,Dueling DQN.本章内容主要参考了ICML 2016的deep RL tutorial和Dueling DQN的论文<Dueling Network Architectures for Deep Reinforcement Learning>(ICML 2016). 1. Dueling DQN的优化点考虑 在前面讲到的DDQN中,…
在强化学习(一)模型基础中,我们讲到了强化学习模型的8个基本要素.但是仅凭这些要素还是无法使用强化学习来帮助我们解决问题的, 在讲到模型训练前,模型的简化也很重要,这一篇主要就是讲如何利用马尔科夫决策过程(Markov Decision Process,以下简称MDP)来简化强化学习的建模. MDP这一篇对应Sutton书的第三章和UCL强化学习课程的第二讲. 1. 强化学习引入MDP的原因 强化学习的8个要素我们在第一节已经讲了.其中的第七个是环境的状态转化模型,它可以表示为一个概率模型,即在…
原文地址: https://www.cnblogs.com/pinard/p/9426283.html --------------------------------------------------------------------------------------- 在强化学习(一)模型基础中,我们讲到了强化学习模型的8个基本要素.但是仅凭这些要素还是无法使用强化学习来帮助我们解决问题的, 在讲到模型训练前,模型的简化也很重要,这一篇主要就是讲如何利用马尔科夫决策过程(Markov…
首先区分几个概念: 聚集索引 主索引和辅助索引(即二级索引) innodb中每个表都有一个聚簇索引(clustered index ),除此之外的表上的每个非聚簇索引都是二级索引,又叫辅助索引(secondary indexes).聚簇索引和非聚簇索引不是一种索引类型而是一种存储方式. 以下转载自:http://blog.codinglabs.org/articles/theory-of-mysql-index.html 摘要 本文以MySQL数据库为研究对象,讨论与数据库索引相关的一些话题.特…
div.example { background-color: rgba(229, 236, 243, 1); color: rgba(0, 0, 0, 1); padding: 0.5em; margin: 1em 2em 1em 1em } div.warning { border: 1px solid rgba(255, 0, 0, 1) } 本文是<大型分布式网站架构设计与实践> 3.5节HTTPS协议的学习笔记. HTTPS和SSL HTTPS的全称是Hypertext Transf…
1. 概述 前面我们已经介绍了最早的神经网络:感知机.感知机一个非常致命的缺点是由于它的线性结构,其只能做线性预测(甚至无法解决回归问题),这也是其在当时广为诟病的一个点. 虽然感知机无法解决非线性问题,但是其给非线性问题的解决提供了一个思路.感知机的局限来自于其线性结构,如果我们能够给其加入非线性结构,比如先给输入做一个非线性变换,这样其就能拟合非线性问题.那么这就是我们这次要讲的前向神经网络. 2. 结构 前向神经网络(Feed-forward Neural Network)是一种多层的网络…
通配符与正則表達式的差别 通配符是bash原生支持的语法,正則表達式是处理字符串的一种表示方式, 正則表達式须要支持的工具支持才干够 语系设置 : export LANG=C grep alias 设置 : grep --color=auto grep 的一些高级參数 grep [-A] [-B] '搜寻字符串' filename //同一时候输出之前的k行和之后的m行 -A : 后面可加数字,表示列出改行以及之后的n行 -B : 列出前面几行  搜寻keyword假设中间使用正則表達式的话,则…
第一周 循环序列模型(Recurrent Neural Networks) 1.1 为什么选择序列模型?(Why Sequence Models?) 1.2 数学符号(Notation) 这个输入数据是 9 个单词组成的序列,所以会有 9 个特征集和来表示这 9 个 单词,并按序列中的位置进行索引,用\(…
摘要:学习玩游戏一直是当今AI研究的热门话题之一.使用博弈论/搜索算法来解决这些问题需要特别地进行周密的特性定义,使得其扩展性不强.使用深度学习算法训练的卷积神经网络模型(CNN)自提出以来在图像处理领域的多个大规模识别任务上取得了令人瞩目的成绩.本文是要开发一个一般的框架来学习特定游戏的特性并解决这个问题,其应用的项目是受欢迎的手机游戏Flappy Bird,控制游戏中的小鸟穿过一堆障碍物.本文目标是开发一个卷积神经网络模型,从游戏画面帧中学习特性,并训练模型在每一个游戏实例中采取正确的操作.…