​编者按:在深度学习"红透"半边天的同时,当前很多深度学习框架却面临着共同的性能问题:被频繁调用的代数运算符严重影响模型的执行效率. 本文中,微软亚洲研究院研究员薛继龙将为大家介绍能够轻松玩转计算性能的"加速神器"--内核融合,探讨内核融合在加速深度学习上的主要方法以及当前面临的主要挑战. 如今,较为常见的深度学习框架(如CNTK.TensorFlow和Caffe2等)都会将一个深度学习的模型抽象成为一个由一些基本运算符(Operator)组成的有向无环的数据流图(…
深度学习,机器学习神器,白嫖免费GPU! 最近在学习计算机视觉,自己的小本本没有那么高的算力,层级尝试过Google的Colab,以及移动云的GPU算力,都不算理想.如果数据集比较小,可以试试Colab,但是如果数据集很大的话,就不推荐使用了,最终找到了一个很棒的产品,极链:价格便宜,而且机器很多,算力很快,配置很高.设置方便,极容易上手. 点击立即白嫖 体验对比 最重要的是,学生认证后,会有赠送100云币,也就是100元,而且每天登陆增送云币,如果你是参加竞赛,也是可以申请得到赞助的,完全免费…
这是一个导读,可以快速找到我记录的关于人工智能(深度学习)加速芯片论文阅读笔记. ISSCC 2017 Session14 Deep Learning Processors: ISSCC 2017关于Deep Learning Processors的Slides笔记,主要参考了[1]中的笔记,自己根据paper和slides读一遍,这里记一下笔记,方便以后查阅. 14.1 A 2.9TOPS/W Deep Convolutional Neural Network SoC in FD-SOI 28…
在计算机视觉和机器学习方向有一个特别好用但是比较低调的库,也就是dlib,与opencv相比其包含了很多最新的算法,尤其是深度学习方面的,因此很有必要学习一下.恰好最近换了一台笔记本,内含一块GTX1060的显卡,可以用来更快地跑深度学习算法.以前用公司HP的工作站配置过dlib,GPU是Quadro K420,用dlib自带的人脸识别算法(ResNet)测试过,相比较1060的速度确实要快上很多.dlib.cuda和cudnn的版本经常会更新,每次重新配置环境会遇到一些问题,在这里记下来吧.…
英特尔与 Facebook 曾联手合作,在多卡训练工作负载中验证了 BFloat16 (BF16) 的优势:在不修改训练超参数的情况下,BFloat16 与单精度 32 位浮点数 (FP32) 得到了相同的准确率.现在,英特尔发布了第三代英特尔 至强 可扩展处理器(代号 Cooper Lake),该处理器集成了支持 BF16 的英特尔 深度学习加速技术(英特尔 DL Boost),可大幅提升训练和推理能力,并且也支持去年推出的英特尔 深度学习 INT8 加速技术. 英特尔和 Facebook 不…
本节详细说明一下深度学习环境配置,Ubuntu 16.04 + Nvidia GTX 1080 + Python 3.6 + CUDA 9.0 + cuDNN 7.1 + TensorFlow 1.6. Python 3.6 首先安装 Python 3.6,这里使用 Anaconda 3 来安装,下载地址:https://www.anaconda.com/download/#linux,点击 Download 按钮下载即可,这里下载的是 Anaconda 3-5.1 版本,如果下载速度过慢可以选…
本文转载自:https://blog.csdn.net/qq_38906523/article/details/78730158 即将进入 2018 年,随着硬件的更新换代,越来越多的机器学习从业者又开始面临选择 GPU 的难题.正如我们所知,机器学习的成功与否很大程度上取决于硬件的承载能力.在今年 5 月,我在组装自己的深度学习机器时对市面上的所有 GPU 进行了评测.而在本文中,我们将更加深入地探讨: 为什么深度学习需要使用 GPU GPU 的哪种性能指标最为重要 选购 GPU 时有哪些坑需…
用TVM在硬件平台上部署深度学习工作负载的端到端 IR 堆栈 深度学习已变得无处不在,不可或缺.这场革命的一部分是由可扩展的深度学习系统推动的,如滕索弗洛.MXNet.咖啡和皮托奇.大多数现有系统针对范围狭窄的服务器级 GPU 进行了优化,需要在其它平台,如移动电话.物联网设备和专用加速器(FPGA.ASIC)上部署大量精力.随着深度学习框架和硬件后端数量的增加,建议建立一个统一的中间表示 (IR) 堆栈,以缩小以生产力为中心的深度学习框架与面向性能或效率的硬件后端之间的差距. TVM 是一个新…
针对深度学习(神经网络)的AI框架调研 在我们的AI安全引擎中未来会使用深度学习(神经网络),后续将引入AI芯片,因此重点看了下业界AI芯片厂商和对应芯片的AI框架,包括Intel(MKL CPU).谷歌(TPU).NVidia(GPU).华为和寒武纪,发现所有的AI芯片都支持TensorFlow框架. 从收集到的信息来看: 1.目前TensorFlow在智能边缘计算中是主流,例如TensorFlow提供了移动端应用开发API,参考资料中包含了示例. 2.AI芯片对深度学习的加速效果,其中NVI…
并非广告~实在是太良心了,所以费时间给他们点赞一下~ SuperVessel云平台是IBM中国研究院和中国系统与技术中心基于POWER架构和OpenStack技术共同构建的, 支持开发者远程开发的免费科研云平台.除支持虚拟机和容器服务外还提供:大数据Hadoop,Spark开发环境.Python科学计算开发环境(可替代Matlab).Java Eclipse/Bluefish运行环境.C/C++运行环境 只需任意一个邮箱,1分钟就可以申请到服务器,没见过更快的了-使用之后觉得不足之处: 1.由于…