求解五维偏序 给定 \(n(\le 3\times 10^4)\) 个五元组,对于每个五元组 \((a_i, b_i, c_i, d_i, e_i)\),求存在多少个 \(1\le j\le n\) 满足 \(a_i > a_j\) 且 \(b_i > b_j\) 且 \(c_i > c_j\) 且 \(d_i > d_j\) 且 \(e_i > e_j\).保证每一维都是 \(1\cdots n\) 的排列. 第一感觉 传统的做法有 cdq 分治或 树套树,但是在本题中复杂…
  Sparse Filtering 是一个用于提取特征的无监督学习算法,与通常特征学习算法试图建模训练数据的分布的做法不同,Sparse Filtering 直接对训练数据的特征分布进行分析,在所谓"好特征"的指导下构建目标函数来进行优化,其中只涉及一个可调参数.本文将主要讨论两个问题: (1)什么样的特征是好的特征: (2)如何利用好特征的条件来构造 Sparse Filtering 的目标函数. 目录链接 (一)网络结构与特征矩阵 (二)好特征的刻画 (三)目标函数的建立和求解…
提出混合模型主要是为了能更好地近似一些较复杂的样本分布,通过不断添加component个数,能够随意地逼近不论什么连续的概率分布.所以我们觉得不论什么样本分布都能够用混合模型来建模.由于高斯函数具有一些非常有用的性质.所以高斯混合模型被广泛地使用. GMM与kmeans相似,也是属于clustering,不同的是.kmeans是把每一个样本点聚到当中一个cluster,而GMM是给出这些样本点到每一个cluster的概率.每一个component就是一个聚类中心. GMM(Gaussian Mi…
The geometric constraint solver is slower and less precise at solving kinematic problems, but might be easier and more intuitive to use. Moreover, it allows interacting with a mechanism in a more flexible way than the inverse kinematics calculation m…
一起来学matlab-matlab学习笔记11 11_3 高维数组处理和运算 filp, shiftdim, size, permute, ipermute 觉得有用的话,欢迎一起讨论相互学习~Follow Me filp 翻转元素顺序 语法 B = flip(A) B = flip(A,dim) 说明 B = flip(A) 返回的数组 B 具有与 A 相同的大小,但元素顺序已反转.B 中重新排序的维度取决于 A 的形状: 如果 A 为向量,flip(A) 将沿向量的长度方向反转元素顺序. 如…
一起来学matlab-matlab学习笔记11 11_2 高维数组处理和运算 squeeze, ind2sub, sub2ind 觉得有用的话,欢迎一起讨论相互学习~Follow Me squeeze 删除单维度--B=squeeze(A) B = squeeze(A)返回一个与A元素相同,但去掉了所有单维度的数组B.单例维度是指size(A,dim) = 1的任何维度.二维阵列不受squeeze函数的影响;如果A是一个行或列向量或标量(1×1)的值,那么B = A. 从数组中去掉单维度 创建一…
点亮技能树行动-- 本篇blog按照分类将网上写的OI知识点归纳了一下,然后会附上蒟蒻我的学习笔记或者是我认为写的不错的专题博客qwqwqwq(好吧,其实已经咕咕咕了...) 基础算法 贪心 枚举 分治 倍增 构造 高精 模拟 图论 图 最短路,次短路 k短路 差分约束 最小生成树 拓扑排序 欧拉图 二分图染色,二分图匹配 最大团,最大独立集 tarjan找scc.桥.割点,缩点 网络流 最大流,最小割,费用流 有上下界的网络流 分数规划 2-SAT 树 LCA 最近公共祖先 树的直径 树的重心…
支持向量机即Support Vector Machine,简称SVM.一听这个名字,就有眩晕的感觉.支持(Support).向量(Vector).机器(Machine),这三个毫无关联的词,硬生生地凑在了一起.从修辞的角度,这个合成词最终落脚到"Machine"上,还以为是一种牛X的机器呢?实际上,它是一种算法,是效果最好的分类算法之一. SVM是最大间隔分类器,它能很好地处理线性可分的问题,并可推广到非线性问题.实际使用的时候,还需要考虑噪音的问题. 本文只是一篇学习笔记,主要参考了…
维基百科对深度学习的精确定义为“一类通过多层非线性变换对高复杂性数据建模算法的合集”.因为深层神经网络是实现“多层非线性变换”最常用的一种方法,所以在实际中可以认为深度学习就是深度神经网络的代名词.从维基百科给出的定义可以看出,深度学习有两个非常重要的特性——多层和非线性.那么为什么要强调这两个性质呢?下面我们开始学习. 1,线性模型的局限性 在线性模型中,模型的输出为输入的加权和.假设一个模型的输出 y  和输入 xi 满足以下关系,那么这个模型就是一个线性模型: 其中,wi , b € R…
CTR学习笔记系列的第一篇,总结在深度模型称王之前经典LR,FM, FFM模型,这些经典模型后续也作为组件用于各个深度模型.模型分别用自定义Keras Layer和estimator来实现,哈哈一个是旧爱一个是新欢.特征工程依赖feature_column实现,这里做的比较简单在后面的深度模型再好好搞.完整代码在这里https://github.com/DSXiangLi/CTR 问题定义 CTR本质是一个二分类问题,$X \in R^N $是用户和广告相关特征, \(Y \in (0,1)\)…