主成分分析(Principal Component Analysis) 一个非监督的机器学习算法 主要用于数据的降维 通过降维,可以发现更便于人类理解的特征 其他应用:可视化.去噪 通过映射,我们可以把数据从二维降到一维: 显然,右边的要好一点,因为间距大,更容易看出差距. 如何定义样本间距?使用方差,因为方差越小,数据月密集,方差越大,数据月分散. 另均值为0: 因为均值为0,w是单位向量,模为1,所以: 梯度上升法求解PCA问题 分析:X是mn的矩阵,m是样本数,n是特征数,X^(i)是第i…