PCA主成分分析的矩阵原理】的更多相关文章

[前言]主成分分析(PCA)实现一般有两种,一种是对于方阵用特征值分解去实现的,一种是对于不是方阵的用奇异值(SVD)分解去实现的. 一.特征值 特征值很好理解,特征值和特征向量代表了一个矩阵最鲜明的特征方向.多个特征值和特征向量的线性组合可以表示此矩阵.选取特征值最大的特征值对应的特征向量,此特征向量在组成矩阵的线性组合中所占的比重是最大的.一般选取前一半就可,实现降维. 二.奇异值 这里主要谈谈如何用SVD去解PCA的问题.PCA的问题其实是一个基的变换,使得变换后的数据有着最大的方差.方差…
用PCA(主成分分析法)进行信号滤波 此文章从我之前的C博客上导入,代码什么的可以参考matlab官方帮助文档 现在网上大多是通过PCA对数据进行降维,其实PCA还有一个用处就是可以进行信号滤波.网上对此的介绍比较少,正好最近研究了一下,所以把自己的理解记录下来. 对于PCA原理的介绍网上已经有很多帖子,我比较喜欢的是这个:PCA的数学原理.文章把PCA降维定性和数学理解分析得生动且透彻,这里不再重复. 直接上干货吧,简单一个例子: 给定信号: 其中有用信号为三个频率不同且幅值相位不相同的余弦函…
前言            以下内容是个人学习之后的感悟,转载请注明出处~ 简介 在用统计分析方法研究多变量的课题时,变量个数太多就会增加课题的复杂性.人们自然希望变量个数较少而得到的 信息较多.在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反 映此课题的信息有一定的重叠.主成分分析是对于原先提出的所有变量,将重复的变量(关系紧密的变量)删去多余,建立 尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映课题的信息方面尽可能保持原有…
作者:拾毅者 出处:http://blog.csdn.net/Dream_angel_Z/article/details/50760130 Github源代码:https://github.com/csuldw/MachineLearning/tree/master/PCA PCA(principle component analysis) .主成分分析,主要是用来减少数据集的维度,然后挑选出基本的特征.原理简单,实现也简单.关于原理公式的推导,本文不会涉及,你能够參考以下的參考文献,也能够去W…
PCA 主成分分析 原理概述 用途 - 降维中最常用的手段 目标 - 提取最有价值的信息( 基于方差 ) 问题 - 降维后的数据的意义 ? 所需数学基础概念 向量的表示 基变换 协方差矩阵 协方差 优化目标 降维实例 代码实现 """ 这里假设原始数据集为矩阵 dataMat,其中每一行代表一个样本,每一列代表同一个特征(与上面的介绍稍有不同,上 面是每一列代表一个样本,每一行代表同一个特征). """ import numpy as np ##…
PCA主成分分析 PCA目的 最大可分性(最大投影方差) 投影 优化目标 关键点 推导 为什么要找最大特征值对应的特征向量呢? 之前看3DMM的论文的看到其用了PCA的方法,一开始以为自己对于PCA已经有了一定的理解,但是当看到式子的时候发现自己好像对于原理却又不甚明了,所以又回顾了以下PCA的原理,在此写一个总结. PCA目的 主成分分析(principal component analysis, PCA) 是常用的一种降维方法,其目的是为了让数据合理的降维,在降低维度的同时尽量保证数据的原始…
PCA(主成分分析)方法浅析 降维.数据压缩 找到数据中最重要的方向:方差最大的方向,也就是样本间差距最显著的方向 在与第一个正交的超平面上找最合适的第二个方向 PCA算法流程 上图第一步描述不正确,应该是去中心化,而不是中心化 具体来说,投影这一环节就是:将与特征值对应的k个特征向量分别作为行向量组成特征向量矩阵P 直接乘以特征变量就好.原来是二维数据,降维之后只有一维. 我们想保留几个维度的特征,就留下几个特征值和对应的特征向量.…
链接1 链接2(原文地址) PCA的数学原理(转) PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维.网上关于PCA的文章有很多,但是大多数只描述了PCA的分析过程,而没有讲述其中的原理.这篇文章的目的是介绍PCA的基本数学原理,帮助读者了解PCA的工作机制是什么. 当然我并不打算把文章写成纯数学文章,而是希望用直观和易懂的方式叙述PCA的数学…
原文载于此:http://blog.csdn.net/zhongkelee/article/details/44064401 一.PCA简介 1. 相关背景 上完陈恩红老师的<机器学习与知识发现>和季海波老师的<矩阵代数>两门课之后,颇有体会.最近在做主成分分析和奇异值分解方面的项目,所以记录一下心得体会. 在许多领域的研究与应用中,往往需要对反映事物的多个变量进行大量的观测,收集大量数据以便进行分析寻找规律.多变量大样本无疑会为研究和应用提供了丰富的信息,但也在一定程度上增加了数…
主成分分析(PCA, Principal Component Analysis) 一个非监督的机器学习算法 主要用于数据的降维处理 通过降维,可以发现更便于人类理解的特征 其他应用:数据可视化,去噪等 主成分分析是尽可能地忠实再现原始重要信息的数据降维方法 原理推导: 如图,有一个二维的数据集,其特征分布于特征1和2两个方向 现在希望对数据进行降维处理,将数据压缩到一维,直观的我们可以想到将特征一或者特征二舍弃一个,可以得到这样的结果 ------- : 舍弃特征1之后 ------- : 舍弃…