gcd(a,b) 复杂度证明】的更多相关文章

(b,a%b) a%b<=min(b,a%b)/2 a>=b时每次至少缩减一半 a<b时下次a>b 所以复杂度最多2log(max(a,b)) 证明:a%b<=min(a,a%b)/2 a>b时 b<=a/2 那么a%b<b<=b<=a/2 a>b时 b>a/2 那么a%b=a-b<=a/2 a<b时 a%b=a 证毕…
非旋FHQ Treap复杂度证明(类比快排) a,b都是sort之后的排列(从小到大) 由一个排列a构造一颗BST,由于我们只确定了中序遍历=a,但这显然是不能确定一棵树的形态的. 由一个排列b构造一颗Heap(大根),由于没有重复元素,然后人为钦定左儿子<右儿子,那么他的后序遍历=b. 但是一棵树,如果中序遍历和后续遍历确定了,那么他的形态也就确定了.证明考虑构造一种由中序和后序遍历的序列还原一颗确定的树的算法. 考虑对于一个后序遍历,最后那个数\(u\)一定是根. 那么确定\(u\)在中序遍…
关于$SAM$的复杂度证明(大部分是对博客的我自己的理解和看法) 这部分是我的回忆,可省略 先回忆一下$SAM$ 我所理解的$SAM$,首先扒一张图 初始串$aabbabd$ 首先发现,下图里的$S->9$的一条直线是$aabbabd$是原串 那么从这里我们就可以看到$endpos$关系了,和$AC$自动机不同的是 发现一些子串结尾是相同的,那么就可以共用一个节点,那么从起点到这个点能表示的所有子串的$endpos$相同,那么显然可以共用这个点,这就是空间上的能省就省 又因为这个$SAM$是为了…
min_25 筛是由 min_25 大佬使用后普遍推广的一种新型算法,这个算法能在 \(O({n^{3\over 4}\over log~ n})\) 的复杂度内解决所有的积性函数前缀和求解问题(个人感觉套上素数定理证明的复杂度的话应该要把下面的 log 改成 ln ,不过也差不多啦~) 其实 min_25 筛的入门TXC 大佬的 blog 已经写的非常棒了QVQ 所以搬博客的话鉴于博主太懒了就不干了...直接帮 TXC 大佬安利博客完事 这篇博客主要的目的是证明网上大多没有的 min_25 筛…
本文用势能法证明\(Splay\)的均摊复杂度,对\(Splay\)的具体操作不进行讲述. 为了方便本文的描述,定义如下内容: 在文中我们用\(T\)表示一棵完整的\(Splay\),并(不严谨地)用\(|T|\)表示\(T\)这棵\(Splay\)的节点数目. 如无特殊说明,小写英文字母(如\(x\),\(y\),\(z\))在本文中表示\(T\)的一个节点,并(不严谨地)用\(|x|\)表示以节点\(x\)为根的子树的大小,\(x\in T\)表示节点\(x\)在\(T\)中. 一般我们默认…
在摊还分析中,通过求数据结构的一系列的操作的平均时间,来评价操作的代价.这样,即使这些操作中的某个单一操作的代价很高,也可以证明平均代价很低.摊还分析不涉及概率,它可以保证最坏情况下每个操作的平均性能. 摊还分析有三种常用的技术: 聚合分析,它确定$n$个操作的总代价的上界为$T(n)$,所以每个操作的平均代价为$\frac{{T(n)}}{n}$.每个操作都有相同的摊还代价. 核算法:分析每个操作的摊还代价,不同于聚合分析,每种操作的摊还代价是不同的,核算法将序列中较早的操作的余额作为“信用”…
#include <cstdio> #include <iostream> using namespace std; /*扩展gcd证明 由于当d = gcd(a,b)时: d = d1 = gcd(b,a%b); d1 = b1x1 + a%by1; d = ax+by = b1x1+a%by1.又由于a%b = a - a%b*b; 上式变形能够有 b1x1 + (a-b*a/b)*y1 = a*y1 + b*(x1-a/b*y1); 也就是是说ax+by = a*y1 + b…
线性时间选择算法中,最坏情况仍然可以保持O(n). 原因是通过对中位数的中位数的寻找,保证每次分组后,任意一组包含元素的数量不会大于某个值. 普通的Partition最坏情况下,每次只能排除一个元素,所以会造成O(n2)的复杂度. 具体证明可以参考: 王云鹏论文<线性时间选择算法时间复杂度深入研究>…
引言 KMP算法应该是看了一次又一次,比赛的时候字符串不是我负责,所以学到的东西又还给网上的博客了-- 退役后再翻开看,看到模板,心想这不是\(O(n^2)\)的复杂度吗? 有两个循环也不能看做是\(O(n^2)​\)的,这要用到摊还分析. 模板 这里用到的模板是算竞上的 calc_next() Next[1] = 0; for (int i = 2, j = 0; i <= n; ++i) { while (j > 0 && a[i] != a[j + 1]) j = Nex…
以下均为内网 树上染色 https://www.lydsy.com/JudgeOnline/problem.php?id=4033 可怜与超市 http://hzoj.com/contest/62/problem/5 可以简单的列出状态转移方程. 它的转移过程类似: void dfs(int x) { ;i<p[x].size();++i) dfs(p[x][i]); ; memset(tmp[cur],0x3f,sizeof(tmp[cur])); tmp[cur][][]=tmp[cur][…
1个常识: 如果 a≥b 并且 b≤a,那么 a=b. 2个前提: 1)只在非负整数范围内讨论两个数 m 和 n 的最大公约数,即 m, n ∈ N. 2)0可以被任何数整除,但是0不能整除任何数,即 ∀x(x|0) and ∀x(0| x). 1个引理: 假设 k|a, k|b,则对任意的 x,y  ∈ Z, k|(xa+yb)均成立. 证明: k|a => a=pk, k|b => b==qk (其中 p,q ∈ Z) 于是有 xa+yb=xpk+yqk=(xp+yq)k 因为 k|(xp…
gcd就是最大公约数,gcd(x, y)一般用(x, y)表示.与此相对的是lcm,最小公倍数,lcm(x, y)一般用[x, y]表示. 人人都知道:lcm(x, y) = x * y / gcd(x, y) 证明起来也不是很难: (这真的是我自己写的,因为博客园不支持这格式……) 至于gcd的求法,想必各位在高中都学过辗转相除法和更相减损之术,这里只讲辗转相除法(更相减损之术略慢) 首先不妨设 x ≤ y,则gcd(x, y)  =gcd(x, x +y) = gcd(x, y - x).所…
欧几里得算法 欧几里得算法的复杂度为O(log(n)),是一个非常高效的求最大公约数算法. 在这里不证明欧几里得算法的复杂度,有兴趣的可以访问以下链接:http://blog.sina.com.cn/s/blog_62e4e31a0101feo7.html 定义如下: 欧几里德算法是用来求两个正整数最大公约数的算法.是由古希腊数学家欧几里德在其著作<The Elements>中最早描述了这种算法,所以被命名为欧几里德算法. 计算公式为:gcd(a,b) = gcd(b,a mod b) 证明:…
KMP 第一次接触 \(border\) 都是先从 KMP 开始的吧. 思想在于先对于一个串自匹配以求出 fail 指针(也就是 border) 然后就可以在匹配其他串的时候非常自然的失配转移.在此顺便给出一下 \(border\) 的定义: Border 字符串的某个能与后缀完全匹配的真前缀(即不为原串的前缀). 在 KMP 中我们一般关注最长的 \(border\),然后我们 KMP 中的 fail 实际上就是存储的最长的 \(border\) 的结束的位置(因为是前缀所以可以这样存储).…
以下内容均节选自<算法导论>第31章 最大公约数 定义:若:\[\begin{array}{l}a = p_1^{e_1}p_2^{e_2} \ldots p_r^{e_r}\\b = p_1^{f_1}p_2^{f_1} \ldots p_r^{f_r}\end{array}\] 则:\[\gcd( a,b) = p_1^{\min ( e_1,f_1)}p_2^{\min ( e_2,f_2)} \cdots p_r^{\min ( e_r,f_r )}\] GCD递归定理:对任意非负整数…
0 写在前面 本文受 NaVi_Awson 的启发,甚至一些地方直接引用,在此说明. 1 数论 1.0 gcd 1.0.0 gcd $gcd(a,b) = gcd(b,a\;mod\;b)$ 证明:设 $c\mid a$,$c\mid b$,则 $c\mid (b-a)$. 设 $c\nmid a$,则 $c$ 不是 $a,b-a$ 的公因子. 设 $c\mid a$,$c\nmid b$,则 $c$ 不是 $a,b-a$ 的公因子. int gcd(int a,int b){ if(!b) r…
0 写在前面 0.0 前言 由于我太菜了,导致一些东西一学就忘,特开此文来记录下最让我头痛的数学相关问题. 一些引用的文字都注释了原文链接,若侵犯了您的权益,敬请告知:若文章中出现错误,也烦请告知. 该文于 2018.3.31 完成最后一次修改(若有出错的地方,之后也会进行维护).其主要内容限于数论和组合计数类数学相关问题.因为版面原因,其余数学方面的总结会以全新的博文呈现. 感谢你的造访. 0.1 记号说明 由于该文完成的间隔跨度太大,不同时期的内容的写法不严谨,甚至 $LaTeX$ 也有许多…
欧几里德算法 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数.其计算原理依赖于下面的定理: 定理:gcd(a,b) = gcd(b,a mod b) 证明:a可以表示成a = kb + r,则r = a mod b 假设d是a,b的一个公约数,则有 d|a, d|b,而r = a - kb,因此d|r 因此d是(b,a mod b)的公约数 假设d 是(b,a mod b)的公约数,则 d | b , d |r ,但是a = kb +r 因此d也是(a,b)的公约数 因此(a,b…
扩展gcd算法 神tm ×度搜索exgcd 打到exg的时候出来ex咖喱棒... 球方程\(ax+by=\gcd(a,b)\)的一个解 如果\(b=0\),那么\(\gcd(a,b)=a\),取\(x=1,y=0\)即可 否则:显然\(\gcd(a,b)=\gcd(b,a\mod b)\) 那么可以递归球解\(bx+(a\mod b)y=\gcd(a,b)\)的解. 然后还是要推当前\(x,y\)的. 设\(bx+(a\mod b)y=\gcd(a,b)\)的解为\(x_0,y_0\), \(a…
一.欧几里得算法及其证明 1.定义: 欧几里得算法又称辗转相除法,用于求两数的最大公约数,计算公式为GCD(a,b)=GCD(b,a%b): 2.证明: 设x为两整数a,b(a>=b)的最大公约数,那么x|a,x|b; ①由整数除法具有传递性(若x能整除a,x能整除b,那么x可整除a,b的任意线性组合)知x|a-b; ②设x不是b的因子,则x不是b和a-b的公因子:设x不是a的因子,则x不是b和a-b的公因子:所以可以得出GCD(a,b)=GCD(b,a-b); ③由a>=b知,a可表示为a=…
\(Splay\)的复杂度分析 不论插入,删除还是访问,我们可以发现它们的复杂度都和\(splay\)操作的复杂度同阶,只是一点常数的区别 我们不妨假设有\(n\)个点的\(splay\),进行了\(m\)次\(splay\)操作 采用势能分析 我们记\(w(x) = \left \lceil \log_2 (size(x)) \right \rceil\),注意以\(2\)为底和上取整 我们定义势能函数为\(\varphi = \sum w(x)\) (记第\(i\)次操作操作完之后,势能为\…
参考 有空再更新下用c++, 下面用的Java Dijkstra:适用于权值为非负的图的单源最短路径,用斐波那契堆的复杂度O(E+VlgV) BellmanFord:适用于权值有负值的图的单源最短路径,并且能够检测负圈,复杂度O(VE) SPFA:适用于权值有负值,且没有负圈的图的单源最短路径,论文中的复杂度O(kE),k为每个节点进入Queue的次数,且k一般<=2,但此处的复杂度证明是有问题的,其实SPFA的最坏情况应该是O(VE). Floyd:每对节点之间的最短路径. 先给出结论: (1…
欧拉函数 :欧拉函数是数论中很重要的一个函数,欧拉函数是指:对于一个正整数 n ,小于 n 且和 n 互质的正整数(包括 1)的个数,记作 φ(n) . 完全余数集合:定义小于 n 且和 n 互质的数构成的集合为 Zn ,称呼这个集合为 n 的完全余数集合. 显然 |Zn| =φ(n) . 有关性质:对于素数 p ,φ(p) = p -1 .对于两个不同素数 p, q ,它们的乘积 n = p * q 满足 φ(n) = (p -1) * (q -1)  .这是因为 Zn = {1, 2, 3,…
The sum of gcd Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total Submission(s): 23    Accepted Submission(s): 4 Problem Description You have an array A,the length of A is n Let f(l,r)=∑ri=l∑rj=igcd(ai,ai+1....a…
GCD(一) 题目: The greatest common divisor GCD(a,b) of two positive integers a and b,sometimes written (a,b),is the largest divisor common to a and b,For example,(1,2)=1,(12,18)=6. (a,b) can be easily found by the Euclidean algorithm. Now Carp is conside…
传送门 •题意 给出两个正整数 a,b: 求解 k ,使得 LCM(a+k,b+k) 最小,如果有多个 k 使得 LCM() 最小,输出最小的k: •思路 时隔很久,又重新做这个题 温故果然可以知新❤ 重要知识点 GCD(a,b)=GCD(a,b-a)=GCD(b,b-a) (b>a) 证明: 设GCD(a,b)=c 则a%c=0,b%c=0,(b-a)%c=0 所以GCD(a,b-a)=c 得GCD(a,b)=GCD(a,b-a) gcd(a+k,b-a)肯定是(b-a)的因子 所以gcd(a…
浅谈扩展欧几里得(扩展GCD)算法 本篇随笔讲解信息学奥林匹克竞赛中数论部分的扩展欧几里得算法.为了更好的阅读本篇随笔,读者最好拥有不低于初中二年级(这是经过慎重考虑所评定的等级)的数学素养.并且已经学会了学习这个算法的前置知识:欧几里得算法. 对于对欧几里得算法还有知识模糊的读者,请不要担心,这里为你准备了前导知识讲解,请移步至本蒟蒻的另两篇博客: 浅谈GCD 求最大公约数的方式 裴蜀定理 裴蜀定理的概念及证明 因为翻译版本的不同,这个定理可能还会被叫做贝祖定理.\(B\acute{e}zou…
欧几里得算法: 1.定义:gcd的意思是最大公约数,通常用扩展欧几里得算法求 原理:gcd(a, b)=gcd(b, a%b) 2.证明: 令d=gcd(a, b)  =>  a=m*d,b=n*d 则m*d=t*n*d+a%b  =>  a%b=d*(m-t*n) gcd(b, a%b)=gcd(n*d, (m-t*n)*d) 令gcd(n, m-t*n)=e  =>  n=x*e,m-t*n=y*e 则m-x*e*n=y*e  =>  m=e*(x*n+y) 由gcd(n, m…
首先蒟蒻是在大佬的博客里学习的代码,代码风格多有相似之处,大佬博客https://www.cnblogs.com/lMonster81/p/10433902.html 最大公因数那,顾名思义就是两个数共有的因数里最大的那个,辗转相除求最大公因数所用的原理就是两个数的最大公因数等于这两个数中[较小的那个数]和[两数之差]的最大公因数,证明如下: 描述:关于辗转相除法的具体实现在这里就不具体说明了,本文要记录的是辗转相除法应用于求最大公约数的算法证明过程. 假设: 求m和n的最大公约数. a,b分别…
欧几里得算法: \[gcd(a,b)=gcd(b,a\bmod b)\] 证明: 显然(大雾) 扩展欧几里得及证明: 为解决一个形如 \[ax+by=c\] 的方程. 根据裴蜀定理,当且仅当 \[gcd(a,b)|c\] 时方程有解. 然后解这个方程... 我觉得大概就是: 我们设 \[ax_1+by_1=gcd(a,b)\] \[bx_2+(a\bmod b) y_2=gcd(b,a\bmod b)\] 根据欧几里得以及\(a\bmod b=a-\lfloor a/b\rfloor\)有 \[…