1.概念 接收具有连续特征的列,并输出具有合并分类特征的列.按分位数,对给出的数据列进行离散化分箱处理. 和Bucketizer(分箱处理)一样也是:将连续数值特征转换为离散类别特征.实际上Class QuantileDiscretizer extends Bucketizer 参数1:不同的是这里不再自己定义splits(分类标准),而是定义分几箱(段)就可以了.QuantileDiscretizer自己调用函数计算分位数,并完成离散化. 参数2: 另外一个参数是精度,如果设置为0,则计算最精…
Spark可以运行在各种集群管理器上,并通过集群管理器访问集群中的其他机器.Spark主要有三种集群管理器,如果只是想让spark运行起来,可以采用spark自带的独立集群管理器,采用独立部署的模式:如果是想让Spark部署在其他集群上,各应用共享集群的话,可以采取两种集群管理器:Hadoop Yarn 或 Apache Mesos. 一.独立集群管理器 Spark独立集群管理器提供的在集群上运行应用的简单方法.要使用集群启动脚本,按照以下步骤执行即可:1.将编译好的Spark发送到集群的其他节…
FAIR  调度策略的树结构如下图所示: FAIR 调度策略内存结构 FAIR 模式中有一个 rootPool 和多个子 Pool, 各个子 Pool 中存储着所有待分配的 TaskSetMagager . 在    FAIR   模 式 中 , 需 要 先 对 子    Pool  进 行 排 序 , 再 对 子    Pool  里 面 的 TaskSetMagager 进行排序,因为 Pool 和 TaskSetMagager 都继承了 Schedulable 特质, 因此使用相同的排序算…
摘要:对于Spark用户而言,借助Volcano提供的批量调度.细粒度资源管理等功能,可以更便捷的从Hadoop迁移到Kubernetes,同时大幅提升大规模数据分析业务的性能. 2022年6月16日,Apache Spark 3.3版本正式发布,其中<Support Customized Kubernetes Schedulers>作为Spark 3.3版本的重点(Highlight)特性,其关键能力是从框架层面支持定制化的Kubernetes度器,并且将Volcano作为Spark on…
Alink漫谈(十九) :源码解析 之 分位点离散化Quantile 目录 Alink漫谈(十九) :源码解析 之 分位点离散化Quantile 0x00 摘要 0x01 背景概念 1.1 离散化 1.2 分位数 1.3 四分位数 0x02 示例代码 0x03 总体逻辑 0x04 训练 4.1 quantile 4.2 countElementsPerPartition 4.3 MultiQuantile 4.4 QIndex 0x05 输出模型 0x06 预测 6.1 加载模型 6.2 预测…
Apache Spark 2.2最近引入了高级的基于成本的优化器框架用于收集并均衡不同的列数据的统计工作 (例如., 基(cardinality).唯一值的数量.空值.最大最小值.平均/最大长度,等等)来改进查询类作业的执行计划.均衡这些作业帮助Spark在选取最优查询计划时做出更好决定.这些优化的例子包括在做hash-join时选择正确的一方建hash,选择正确的join类型(广播hash join和全洗牌hash-join)或调整多路join的顺序,等等) 在该博客中,我们将深入讲解Spar…
MemoryManager内存管理器 内存管理器可以说是spark内核中最重要的基础模块之一,shuffle时的排序,rdd缓存,展开内存,广播变量,Task运行结果的存储等等,凡是需要使用内存的地方都需要向内存管理器定额申请.我认为内存管理器的主要作用是为了尽可能减小内存溢出的同时提高内存利用率.旧版本的spark的内存管理是静态内存管理器StaticMemoryManager,而新版本(应该是从1.6之后吧,记不清了)则改成了统一内存管理器UnifiedMemoryManager,同一内存管…
Spark(3) - Extracting, transforming, selecting features 官方文档链接:https://spark.apache.org/docs/2.2.0/ml-features.html 概述 该章节包含基于特征的算法工作,下面是粗略的对算法分组: 提取:从原始数据中提取特征: 转换:缩放.转换.修改特征: 选择:从大的特征集合中选择一个子集: 局部敏感哈希:这一类的算法组合了其他算法在特征转换部分(LSH最根本的作用是处理海量高维数据的最近邻,也就是…
1.背景介绍 Storm以及离线数据平台的MapReduce和Hive构成了Hadoop生态对实时和离线数据处理的一套完整处理解决方案.除了此套解决方案之外,还有一种非常流行的而且完整的离线和 实时数据处理方案.这种方案就是Spark.Spark本质上是对Hadoop特别是MapReduce的补充.优化和完善,尤其是数据处理速度.易用性.迭代计算和复杂数据分析等方面. Spark Streaming 作为Spark整体解决方案中实时数据处理部分,本质上仍然是基于Spark的弹性分布式数据集(Re…
Spark版本:1.6.2 概览 Spark SQL用于处理结构化数据,与Spark RDD API不同,它提供更多关于数据结构信息和计算任务运行信息的接口,Spark SQL内部使用这些额外的信息完成特殊优化.可以通过SQL.DataFrames API.Datasets API与Spark SQL进行交互,无论使用何种方式,SparkSQL使用统一的执行引擎记性处理.用户可以根据自己喜好,在不同API中选择合适的进行处理.本章中所有用例均可以在spark-shell.pyspark shel…