BZOJ 3629 约数和定理+搜索】的更多相关文章

呃呃 看到了这道题 没有任何思路-- 百度了一发题解 说要用约数和定理 就查了一发 http://baike.so.com/doc/7207502-7432191.html (不会的可以先学习一下) 然后呢 我们考虑枚举约数 先线性筛一遍10^5以下的 10^5以上的数可以用已经筛过的素因数枚举 最后就搜一下就好了 (记得判断=1的情况) 还有 此题PE很坑爹 不能有行末空格 0的情况不用输出空行 //By SiriusRen #include <cmath> #include <cst…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3629 如果要搜索,肯定得质因数分解吧:就应该朝这个方向想. **约数和定理: 对于任意一个大于1的正整数N可以分解正整数:N=P₁^a₁ P₂^a₂…Pn^an,则由约数个数定理可知N的正约数有(a₁+1)(a₂+1)(a₃+1)…(an+1)个,那么N的(a₁+1)(a₂+1)(a₃+1)…(an+1)个正约数的和为f(N)=(P₁^0+P₁^1+P₁^2+…P₁^a₁)(P₂^0+P₂…
对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4.如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数. 所以,n以内的反质数即为不超过n的约数个数最多的数. 怎样计算约数个数? 约数个数定理:对于一个大于1正整数n可以分解质因数:n=p1^a1*p2^a2*p3^a3*…*pk^ak,则n的正约数的个数就是(a1+1)(a2+1)(a3+1)…(ak+1) .其中a1.a2.a3…ak是p1.p2.p3,…pk的指数.   所以,只需枚举一个数…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3629 扫除了一个知识盲点:约数和定理 约数和定理: 对于一个大于1正整数n可以分解质因数:n=p1^a1*p2^a2*p3^a3*…*pk^ak,则由约数个数定理可知n的正约数有(a₁+1)(a₂+1)(a₃+1)…(ak+1)个,那么n的(a₁+1)(a₂+1)(a₃+1)…(ak+1)个正约数的和为f(n)=(p1^0+p1^1+p1^2+…p1^a1)(p2^0+p2^1+p2^2+…
这道题考试选择打表,完美爆零.. 算数基本定理: 任何一个大于1的自然数N,都可以唯一分解成有限个质数的乘积N=P₁^a₁ P₂^a₂…Pn^an,这里P₁<P₂<…<Pn均为质数,其诸指数ai是正整数. 这样的分解称为N的标准分解式. 约数和定理: 对于任意一个大于1的正整数N可以分解正整数:N=P₁^a₁ P₂^a₂…Pn^an,则由约数个数定理可知N的正约数有(a₁+1)(a₂+1)(a₃+1)…(an+1)个,那么N的(a₁+1)(a₂+1)(a₃+1)…(an+1)个正约数的和…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1492 这里先讲一下约数个数定理: 对于正整数x,将其质因分解为 x = pow(p1, a) * pow*(p2, b) * pow(p3, c) * ... 则其约数个数为:num(x) = (a+1) * (b+1) * (c+1) *... 推导: 由约数定义可知p1^a1的约数有:p1^0, p1^1, p1^2......p1^a1 ,共(a1+1)个;同理p2^a2的约数有(a2+1)个…
Sumdiv 题目连接: http://poj.org/problem?id=1845 Description Consider two natural numbers A and B. Let S be the sum of all natural divisors of A^B. Determine S modulo 9901 (the rest of the division of S by 9901). Input The only line contains the two natur…
素数必然符合题意. 对于合数,如若它是某个素数x的k次方(k为某个素数y减去1),一定不符合题意.只需找出这些数. 由约数个数定理,其他合数一定符合题意. 就从小到大枚举素数,然后把它的素数-1次方都排除即可. #include<cstdio> #include<cmath> using namespace std; #define MAXP 1000100 #define EPS 0.00000001 typedef long long ll; ll L,R; bool isNo…
题目: POJ1845 分析: 首先用线性筛把\(A\)分解质因数,得到: \[A=p_1^{a_1}*p_2^{a_2}...*p_n^{a_n} (p_i是质数且a_i>0) \] 则显然\(A^B\)分解质因数后为 \[A=p_1^{a_1B}*p_2^{a_2B}...*p_n^{a_nB} (p_i是质数且a_i>0) \] 接下来隆重推出约数和定理:(证明见[知识总结]约数个数定理和约数和定理及其证明) \[Sum=\prod_{i=1}^n \sum_{j=0}^{a_i}p_i…
前言:想了两个小时orz,最后才想到要用约数个数定理…… ------------- 题目大意: 给定$n,q,A[1],A[2],A[3]$ 现有$A[i]=(A[i-1]+A[i-2]+A[i-3])mod q$ 求$(\sum_{i=1}^n \prod_{d|i} d^{A_i})mod10007$的值. $n\leq 300000,q,A[1],A[2],A[3]\leq 10^{16}$. ------------------------ 朴素算法是$O(n^2 \log n)$的,…