DataFrame与数据库的相互转化】的更多相关文章

在Spark中,Dataframe简直可以称为内存中的文本文件. 就像在电脑上直接操作txt. csv. json文件一样简单. val sparkConf = new SparkConf().setAppName("df2db").setMaster("local[1]") val sc = new SparkContext(sparkConf) val sqlContext : SQLContext = new SQLContext(sc) val df = s…
弹性分布式数据集(Resilient Distributed Dataset,RDD) RDD是Spark一开始就提供的主要API,从根本上来说,一个RDD就是你的数据的一个不可变的分布式元素集合,在集群中跨节点分布,可以通过若干提供了转换和处理的底层API进行并行处理.每个RDD都被分为多个分区,这些分区运行在集群不同的节点上. RDD支持两种类型的操作,转化操作(transform)和行动操作(action).转化操作会有一个RDD生成一个新的RDD,行动操作则要计算出来一个结果.spark…
什么是DataFrame 引用 r-tutor上的定义: DataFrame 是一个表格或者类似二维数组的结构,它的各行表示一个实例,各列表示一个变量. 没错,DataFrame就是类似于Excel表格和MySQL数据库一样是一个结构化的数据体.而这种结构化的数据体是当代数据流编程中的中流砥柱,几乎所有先进算法的载体都是DataFrame,比如现在我们耳熟能详的逻辑回归算法.贝叶斯算法.支持向量机算法.XGBoost算法等等都建立在这个数据流编程的基础之上,我们可以在R.Python.Scala…
原文链接:http://www.jianshu.com/p/c0181667daa0 RDD.DataFrame和DataSet是容易产生混淆的概念,必须对其相互之间对比,才可以知道其中异同. RDD和DataFrame RDD-DataFrame 上图直观地体现了DataFrame和RDD的区别.左侧的RDD[Person]虽然以Person为类型参数,但Spark框架本身不了解Person类的内部结构.而右侧的DataFrame却提供了详细的结构信息,使得Spark SQL可以清楚地知道该数…
简述 RDD.DataFrame和DataSet是容易产生混淆的概念,必须对其相互之间对比,才可以知道其中异同:DataFrame多了数据的结构信息,即schema.RDD是分布式的 Java对象的集合.DataFrame是分布式的Row对象的集合. 作者:jacksu来源:简书|2016-03-21 10:40   RDD.DataFrame和DataSet是容易产生混淆的概念,必须对其相互之间对比,才可以知道其中异同. RDD和DataFrame RDD-DataFrame 上图直观地体现了…
接着上一篇博客:HibernateTools实现pojo类 数据库schma mapping映射的相互转换 思路二:由数据库表,生成Mapping映射文件和POJO类. 尽管能够实现,但个人觉着先设计数据库,然后再生成类不符合Hibernate的面对对象持久化的思维方式.好了.还是说步骤吧.首先在test数据库建立两张表,分别为course表和teacher表 -- ---------------------------- -- Table structure for course -- ---…
一.SparkSQL发展: Shark是一个为spark设计的大规模数据仓库系统,它与Hive兼容      Shark建立在Hive的代码基础上,并通过将Hive的部分物理执行计划交换出来(by swapping out the physical execution engine part of Hive).这个方法使得Shark的用户可以加速Hive的查询,但是Shark继承了Hive的大且复杂的代码基线使得Shark很难优化和维护.随着我们遇到了性能优化的上限,以及集成SQL的一些复杂的分…
一.Spark SQL概述  1.Spark SQL的前生今世 Shark是一个为Spark设计的大规模数据仓库系统,它与Hive兼容.Shark建立在Hive的代码基础上,并通过将Hive的部分物理执行计划交换出来.这个方法使得Shark的用户可以加速Hive的查询,但是Shark继承了Hive的大且复杂的代码使得Shark很难优化和维护,同时Shark依赖于Spark的版本.随着我们遇到了性能优化的上限,以及集成SQL的一些复杂的分析功能,我们发现Hive的MapReduce设计的框架限制了…
一个Dataset是一个分布式的数据集,而且它是一个新的接口,这个新的接口是在Spark1.6版本里面才被添加进来的,所以要注意DataFrame是先出来的,然后在1.6版本才出现的Dataset,提供了哪些优点呢?比如强类型,支持lambda表达式,还有还提供了sparksql执行引擎的一些优化,DataFrame里面大部分东西在Dataset里面都是能用的,Dataset它能够通过哪些方式构建?一个是jvm对象,还有一些函数表达式比如map.flatMap.filter等等.这个Datase…
学习利用python进行数据分析的笔记&下星期二内部交流会要讲的内容,一并分享给大家.博主粗心大意,有什么不对的地方欢迎指正~还有许多尚待完善的地方,待我一边学习一边完善~ 前言:各种和数据分析相关python库的介绍(前言1~4摘抄自<利用python进行数据分析>) 1.Numpy: Numpy是python科学计算的基础包,它提供以下功能(不限于此): (1)快速高效的多维数组对象naarray (2)用于对数组执行元素级计算以及直接对数组执行数学运算的函数 (3)用于读写硬盘上…