神经网络的复杂度:可用神经网络的层数和神经网络中待优化参数个数表示 神经网路的层数:一般不计入输入层,层数 = n 个隐藏层 + 1 个输出层 神经网路待优化的参数:神经网络中所有参数 w 的个数 + 所有参数 b 的个数 如: 在该神经网络中,包含 1 个输入层.1 个隐藏层和 1 个输出层,该神经网络的层数为 2 层. 在该神经网络中,参数的个数是所有参数 w 的个数加上所有参数 b 的总数,第一层参数用三行四列的二阶张量表示(即 12 个线上的权重 w)再加上 4 个偏置 b: 第二层参数…
人工智能分为强人工,弱人工. 弱人工智能就包括我们常用的语音识别,图像识别等,或者为了某一个固定目标实现的人工算法,如:下围棋,游戏的AI,聊天机器人,阿尔法狗等. 强人工智能目前只是一个幻想,就是自主意识,具有自我成长.创造力的AI.如妇联2里的奥创,各种电影都有这个概念了. 我希望不久的将来能目睹这一奇迹. 不积跬步无以至千里. 先从基础讲起. 目前比较先进的算法理论据我所知应该分成3大类 1,神经网络 2,遗传算法 3,隐马尔柯夫链 这篇的主题是神经网路,其他两种我以后可能会写出来(可能!…
损失函数(Loss/Error Function): 计算单个训练集的误差,例如:欧氏距离,交叉熵,对比损失,合页损失 代价函数(Cost Function): 计算整个训练集所有损失之和的平均值 至于目标函数(Objective function),字面一些,就是有某个(最优化)目标的函数,比如最优化这个目的.没有找到定义,个人理解,目标函数是一个大类,包含损失函数.代价函数:损失函数.代价函数,属于目标函数.…
1损失函数和代价函数的区别: 损失函数(Loss function):指单个训练样本进行预测的结果与实际结果的误差. 代价函数(Cost function):整个训练集,所有样本误差总和(所有损失函数总和)的平均值.(这一步体现在propagate()函数中的第32行)…
http://www.ics.uci.edu/~dramanan/teaching/ics273a_winter08/lectures/lecture14.pdf Loss Function 损失函数可以看做 误差部分(loss term) + 正则化部分(regularization term) 1.1 Loss Term Gold Standard (ideal case) Hinge (SVM, soft margin) Log (logistic regression, cross en…
原文:http://luowei828.blog.163.com/blog/static/310312042013101401524824 通常而言,损失函数由损失项(loss term)和正则项(regularization term)组成.发现一份不错的介绍资料: http://www.ics.uci.edu/~dramanan/teaching/ics273a_winter08/lectures/lecture14.pdf (题名“Loss functions; a unifying vi…
线性拟合的思路: 线性拟合代码: import tensorflow as tf import numpy as np import matplotlib.pyplot as plt #%%图形绘制 def data_show(x,y,w,b): plt.figure() plt.scatter(x,y,marker='.') plt.scatter(x,(w*x+b),marker='.') plt.show() #%%生成数据 x_data=np.random.rand(100).astyp…
通常而言,损失函数由损失项(loss term)和正则项(regularization term)组成.发现一份不错的介绍资料: http://www.ics.uci.edu/~dramanan/teaching/ics273a_winter08/lectures/lecture14.pdf (题名“Loss functions; a unifying view”).   一.损失项 对回归问题,常用的有:平方损失(for linear regression),绝对值损失: 对分类问题,常用的有…
SGD神经网络以及python中实现 1.SGD(stochastic gradient descend):<1>数据抽取:<2>计算梯度;<3>参数更新:<4>循环 2.三层SGD网络组件:隐藏层(1),隐藏层(2),输出层,损失函数 2.1隐藏层: <1>激活函数/激励函数:sigmoid函数和RELU函数 def sigmoid(): return 1/(1+np.exp(-x)) def relu(x): return np.maximu…
import tensorflow as tf#取数据,目的是辨别数字from tensorflow.examples.tutorials.mnist import input_data'''手动添加数据集:先把4个数据包放进当前目录的文件夹里面'''MNIST_data_folder="C:\\Users\\悟悔\\MNIST_data"#路径mnist=input_data.read_data_sets("MNIST_data/",one_hot=True)de…