KNN与决策树】的更多相关文章

KNN算法总结 KNN算法的核心思想是如果一个样本在特征空间中的k个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别.(监督) k近邻算法(knn)是一种基本的分类与回归的算法,k-means是一种基本的聚类方法. 在训练集中数据和标签已知的情况下,输入测试数据,将测试数据的特征与训练集中对应的特征进行相互比较,找到训练集中与之最为相似的前K个数据,则该测试数据对应的类别就是K个数据中出现次数最多的那个分类,其算法的描述为: 1)计算测试数据与各个训练数据之间的距离: 2)按照距离的…
KNN: 就是计算特征之间的距离,某一个待预测的数据分别与已知的所有数据计算他们之间的特征距离,选出前N个距离最近的数据,这N个数据中哪一类的数据最多,就判定待测数据归属哪一类. 假如N=3,图中待测圆就属于个数最多那个:三角类 总结: 1.KNN是分类数据最简单最有效的算法 2.缺点就是存储空间消耗大,计算耗时. 决策树: 信息增益:划分数据集之前之后信息发生的变化叫做信息增益. 信息公式: 熵:信息的期望值(熵越高也就是数据混合数据越多,杂乱程度越大) 算法思想:选择最好信息增益最大的属性也…
样本: 使用的算法: 代码: import numpy as np import pandas as pd import datetime from sklearn.impute import SimpleImputer #预处理模块 from sklearn.model_selection import train_test_split #训练集和测试集模块 from sklearn.metrics import classification_report #预测结果评估模块 from skl…
School of Computer Science The University of Adelaide   Artificial Intelligence Assignment 2   Semester 1, 2018 due 11:55pm, Thursday 14th May 2018     Introduction 介绍   In this assignment, you will develop several classification models to classify n…
一.写在前面 本系列是对之前机器学习笔记的一个总结,这里只针对最基础的经典机器学习算法,对其本身的要点进行笔记总结,具体到算法的详细过程可以参见其他参考资料和书籍,这里顺便推荐一下Machine Learning in Action一书和Ng的公开课,当然仅有这些是远远不够的,更深入的研究分析可以参见其他国外的论文及站点,此处不再一一列举.机器学习更多的是建模应用,这里仅是一个概要总结,并归纳分析各种算法优缺点,这些都是要了如指掌并且非常熟悉的. 关于机器学习: 基本上目前互联网公司的机器学习/…
Atiti  attilax主要成果与解决方案与案例rsm版 v4 版本历史记录1 1. ##----------主要成果与解决方案与 参与项目1 ###开发流程与培训系列1 #-----组织运营与文化建设系列1 ###编程语言系列与架构系列(au2 ##界面gui 与游戏引擎 与数据可视化系列 (au2 #----跨结构化数据查询 与大文件数据查询 分布式数据处理系列 爬虫与发帖机,数据挖掘采集器系列au3 ###文字文本处理 自然语言处理 日历处理系列3 ##--------图像图片处理 分…
PS:内容来源于网络 一.简介         Python是一种面向对象.直译式计算机程序设计语言,由Guido van Rossum于1989年底发明.由于他简单.易学.免费开源.可移植性.可扩展性等特点,Python又被称之为胶水语言.下图为主要程序语言近年来的流行趋势,Python受欢迎程度扶摇直上. 二.数据分析路径 由于Python拥有非常丰富的库,使其在数据分析领域也有广泛的应用.由于Python本身有十分广泛的应用,本期Python数据分析路线图主要从数据分析从业人员的角度讲述P…
opencv3.1自带demo的介绍和运行操作. 下列实验基本都试过,有些需要根据自己的电脑修改一些路径或者调试参数. 值得注意的是,控制台程序输入有时候要在图像所在的窗口输入相应的指令.我的电脑上安装了vs2013和2015. vs2015+opencv3.1/2.4.9在我的电脑上经常有这个错误:xxxx处有未经处理的异常: 将一个无效参数传递给了将无效参数视为严重错误的函数 ,或者提示在vector.h里的错误.后来用VS2013+Opencv3.1就没有这个问题. opencv可能还是有…
关于分类算法我们之前也讨论过了KNN.决策树.naivebayes.SVM.ANN.logistic回归.关于这么多的分类算法,我们自然需要考虑谁的表现更加的优秀. 既然要对分类算法进行评价,那么我们自然得有评价依据.到目前为止,我们讨论分类的有效性都是基于分类成功率来说的,但是这个指标科学吗?我们不妨考虑这么一个事实:一个样本集合里有95个正例,5个反例,分类器C1利用似然的思想将所有的实例均分成正例,分类成功率为95%:分类器C2成功分出了80个正例,3个反例,分类成功率仅83%.我们可以说…
一.简介 Boosting 是一类算法的总称,这类算法的特点是通过训练若干弱分类器,然后将弱分类器组合成强分类器进行分类.为什么要这样做呢?因为弱分类器训练起来很容易,将弱分类器集成起来,往往可以得到很好的效果.俗话说,"三个臭皮匠,顶个诸葛亮",就是这个道理.这类 boosting 算法的特点是各个弱分类器之间是串行训练的,当前弱分类器的训练依赖于上一轮弱分类器的训练结果.各个弱分类器的权重是不同的,效果好的弱分类器的权重大,效果差的弱分类器的权重小.值得注意的是,AdaBoost…