Kosaraju's algorithm】的更多相关文章

推荐到我的这篇博客中看完整版的. 该算法用于求解有向图的强连通分量,也就是强连通子图的个数. 算法实现摘自Kosaraju's algorithm - 百度百科: #include <iostream> #include <stack> using namespace std; int map[511][511]; int nmap[511][511]; int visited[501]; stack<int> S; int N; int DFS1(int v) { v…
Strongly Connected Components A directed graph is strongly connected if there is a path between all pairs of vertices. A strongly connected component (SCC) of a directed graph is a maximal strongly connected subgraph. For example, there are 3 SCCs in…
Considering that I'ld would like to spread a promotion message across all people in twitter. Assuming the ideal case, if a person tweets a message, then every follower will re-tweet the message. You need to find the minimum number of people to reach…
给定一个有向图 G = (V, E) ,对于任意一对顶点 u 和 v,有 u --> v 和 v --> u,亦即,顶点 u 和 v 是互相可达的,则说明该图 G 是强连通的(Strongly Connected).如下图中,任意两个顶点都是互相可达的. 对于无向图,判断图是否是强连通的,可以直接使用深度优先搜索(DFS)或广度优先搜索(BFS),从任意一个顶点出发,如果遍历的结果包含所有的顶点,则说明图是强连通的. 而对于有向图,则不能使用 DFS 或 BFS 进行直接遍历来判断.如下图中,…
有向图 G = (V, E) 的一个强连通分支(SCC:Strongly Connected Components)是一个最大的顶点集合 C,C 是 V 的子集,对于 C 中的每一对顶点 u 和 v,有 u --> v 和 v --> u,亦即,顶点 u 和 v 是互相可达的. 实际上,强连通分支 SCC 将有向图分割为多个内部强连通的子图.如下图中,整个图不是强连通的,但可以被分割成 3 个强连通分支. 通过 Kosaraju 算法,可以在 O(V+E) 运行时间内找到所有的强连通分支.Ko…
Kosaraju 算法 一.算法简介 在计算科学中,Kosaraju的算法(又称为–Sharir Kosaraju算法)是一个线性时间(linear time)算法找到的有向图的强连通分量.它利用了一个事实,逆图(与各边方向相同的图形反转, transpose graph)有相同的强连通分量的原始图. 有关强连通分量的介绍在之前Tarjan 算法中:Tarjan Algorithm 逆图(Tranpose Graph ): 我们对逆图定义如下: GT=(V, ET),ET={(u, v):(v,…
Code[VS] 1332 上白泽慧音题解 Tarjan Algorithm Kosaraju Algorithm 题目传送门:http://codevs.cn/problem/1332/   题目描述 Description 在幻想乡,上白泽慧音是以知识渊博闻名的老师.春雪异变导致人间之里的很多道路都被大雪堵塞,使有的学生不能顺利地到达慧音所在的村庄.因此慧音决定换一个能够聚集最多人数的村庄作为新的教学地点.人间之里由N个村庄(编号为1..N)和M条道路组成,道路分为两种一种为单向通行的,一种…
Graph Search and Connectivity Generic Graph Search Goals 1. find everything findable 2. don't explore anything twice Generic Algorithm (given graph G, vertex S) --- initialize S explored (all others unexplored) --- while possible: --- choose an edge(…
//P2002解题思路: //先求SCC,缩点后,转换为DAG(有向无环图) //在DAG上统计入度为0的scc数量即可 //Kosaraju时间复杂度:O(N+E) //两次DFS,2N,图的转置E,共2N+E #include<iostream> #include<cstdio> #include<algorithm> #include<cstring> using namespace std; const int maxn=500010; struct…
Kosaraju 这个算法是用来求解图的强连通分量的,这个是图论的一些知识,前段时间没有学,这几天在补坑... 强连通分量: 有向图中,尽可能多的若干顶点组成的子图中,这些顶点都是相互可到达的,则这些顶点成为一个强连通分量 如下图所示,a.b.e以及f.g和c.d.h各自构成一个强联通分量 Kosaraju的求解方法 对于一个无向图的连通分量,从连通分量的任意一个顶点开始进行一次DFS,一定是可以遍历这个连通分量的所有定点的.所以,整个图的连通分量数就等价于我们对于这个图找了几次起点(也就是我们…