快速的区域卷积网络方法(Fast R-CNN)   论文地址:https://arxiv.org/abs/1504.08083 摘要: 本文提出一种基于快速的区域卷积网络方法(Fast R-CNN)用于物体检测(object detection).Fast R-CNN建立在先前的工作的基础上,能够有效的使用深度卷积网络对物体候选区域(Region Proposals)进行分类.和之前的工作相比,Fast R-CNN采用了多种创新技术去提高训练和测试速度,然而它也提高了物体的检测精度.Fast …
论文标题:Fast R-CNN 论文作者:Ross Girshick 论文地址:https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Girshick_Fast_R-CNN_ICCV_2015_paper.pdf https://arxiv.org/pdf/1504.08083.pdf Fast RCNN 的GitHub地址:https://github.com/rbgirshick/fast-rcnn 参考的Fast…
点云配准的端到端深度神经网络:ICCV2019论文解读 DeepVCP: An End-to-End Deep Neural Network for Point Cloud Registration 论文链接: http://openaccess.thecvf.com/content_ICCV_2019/papers/Lu_DeepVCP_An_End-to-End_Deep_Neural_Network_for_Point_Cloud_Registration_ICCV_2019_paper.…
CRNN 论文: An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition CRNN不定长中文识别项目下载地址: https://download.csdn.net/download/dcrmg/10248818 CRNN是一种卷积循环神经网络结构,用于解决基于图像的序列识别问题,特别是场景文字识别问题.CRNN…
https://blog.csdn.net/qq_32417287/article/details/80102466 abstract introduction method overview Deep architecture for place recognition NetVLAD: A Generalized VLAD layer (fVLADfVLAD f_{VLAD}) Max pooling (fmax) Learning from Time Machine data Experi…
摘要:LaneNet是一种端到端的车道线检测方法,包含 LanNet + H-Net 两个网络模型. 本文分享自华为云社区<[论文解读]LaneNet基于实体分割的端到端车道线检测>,作者:一颗小树x. 前言 这是一种端到端的车道线检测方法,包含LanNet+H-Net两个网络模型. LanNet是一种多任务模型,它将实例分割任务拆解成"语义分割"和"对像素进行向量表示",然后将两个分支的结果进行聚类,得到实例分割的结果. H-Net是个小网络,负责预测…
Faster R-CNN论文翻译   Faster R-CNN是互怼完了的好基友一起合作出来的巅峰之作,本文翻译的比例比较小,主要因为本paper是前述paper的一个简单改进,方法清晰,想法自然.什么想法?就是把那个一直明明应该换掉却一直被几位大神挤牙膏般地拖着不换的选择性搜索算法,即区域推荐算法.在Fast R-CNN的基础上将区域推荐换成了神经网络,而且这个神经网络和Fast R-CNN的卷积网络一起复用,大大缩短了计算时间.同时mAP又上了一个台阶,我早就说过了,他们一定是在挤牙膏. F…
论文标题:Detecting Text in Natural Image with Connectionist Text Proposal Network 论文作者:Zhi Tian , Weilin Huang, Tong He , Pan He , and Yu Qiao 论文源代码的下载地址:https://github.com/tianzhi0549/CTPN 论文代码的下载地址:https://github.com/eragonruan/text-detection-ctpn 论文地址…
物体检测论文翻译系列: 建议从前往后看,这些论文之间具有明显的延续性和递进性. R-CNN SPP-net Fast R-CNN Faster R-CNN Faster R-CNN论文翻译   原文地址 Faster R-CNN是互怼完了的好基友一起合作出来的巅峰之作,本文翻译的比例比较小,主要因为本paper是前述paper的一个简单改进,方法清晰,想法自然.什么想法?就是把那个一直明明应该换掉却一直被几位大神挤牙膏般地拖着不换的选择性搜索算法,即区域推荐算法.在Fast R-CNN的基础上将…
论文标题:Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks 标题翻译:基于区域提议(Region  Proposal)网络的实时目标检测 论文作者:Shaoqing Ren, Kaiming He, Ross Girshick, Jian Sun 论文地址:https://arxiv.org/abs/1506.01497 Faster RCNN 的GitHub地址:https://gith…