大家好,我是Mac Jiang,非常高兴您能在百忙之中阅读我的博客!这个专题我主要讲的是Coursera-台湾大学-機器學習基石(Machine Learning Foundations)的课后习题解答.笔者是在学习了Ng的Machine Learning之后開始学习这门课程的.但还是感觉收获颇丰.Ng的课程主要站在计算机专业的角度.教你怎样使用机器学习.注重方法而不是数学推导,是一门非常好的新手教程.而林轩田老师的机器学习基石是站在统计分析角度,证明机器学习算法为什么要这么做,更加注重于理论的…
今天和大家分享coursera-NTU-機器學習基石(Machine Learning Foundations)-作业三的习题解答.笔者在做这些题目时遇到非常多困难,当我在网上寻找答案时却找不到,而林老师又不提供答案,所以我就想把自己做题时对题目怎样思考的写下来,为大家提供一些思路.当然,我对题目的理解不一定是正确的,假设各位博友发现错误请及时留言联系.谢谢!再次提醒:请不要以此博客作为通过考试的用途,还是更好学习.理解课程的途径! 希望我的博客对您的学习有所帮助! 本文出处:http://bl…
大家好,我是Mac Jiang,今天和大家分享Coursera-NTU-機器學習基石(Machine Learning Foundations)-作业四 Q13-20的MATLAB实现. 曾经的代码都是通过C++实现的.可是发现C++实现这些代码太麻烦.这次作业还要频繁更改參数值,所以选择用MATLAB实现了.与C++相比.MATLAB实现显然轻松非常多.在数据导入方面也更加方便.我的代码尽管可以得到正确答案,可是当中可能有某些思想或者细节是错误的,假设各位博友发现,请及时留言纠正,谢谢.再次声…
大家好,我是Mac Jiang.今天和大家分享Coursera-台湾大学-機器學習基石 (Machine Learning Foundations) -作业1的Q15-17题的C++实现. 这部分作业的任务主要是写一个PLA分类器,用于解决一个4维数据的分类问题. 我的代码或许能较好的运行PLA算法.但它不一定是最好最快的实现过程,假设各位博友有更好的思路.请留言联系,谢谢!希望我的博客能给您带来一些学习上的帮助! 其它解答请看汇总帖:http://blog.csdn.net/a10155538…
大家好,我是Mac Jiang,今天和大家分享Coursera-NTU-機器學習基石(Machine Learning Foundations)-作业2 Q16-18的C++实现.尽管有非常多大神已经在非常多博客中给出了Phython的实现,可是给出C++实现的文章明显较少,这里为大家提供一条C++实现的思路!我的代码尽管可以得到正确答案.可是当中可能有某些思想或者细节是错误的,假设各位博友发现,请及时留言纠正,谢谢! 再次声明.博主提供实现代码的原因不是为了让各位通过測试,而是为学习有困难的同…
由于前面分享的几篇博客已经把其他题的解决方法给出了链接,而这道题并没有,于是这里分享一下: 原题: 这题说白了就是求一个二维平面上的数据用决策树来分开,这就是说平面上的点只能画横竖两个线就要把所有的点SATTER掉,先给出四个点的情况,如下: 第一种分割方式: 第二种分割方式 第三种分割方式   为第一种的  上下导致. 第四种分割方式   为第二种的  上下导致. 第 5 6 7 8 分别为  第1 2 3 4 种中正负点的互换, 以此方式,我们可以画出  16种,这里不全部给出了. 由此可以…
这里写的是  习题1 中的    18 , 19, 20 题的解答. Packet 方法,我这里是这样认为的,它所指的贪心算法是不管权重更新是否会对train data有改进都进行修正,因为这里面没有区分是否可以线性分割,如果线性可分那么每次的更新都注定是要使train data的分割效果得到提升,但是如果不是线性可分的,那么并不是每次的权重修正都可以使效果得到提升. 这时候的贪心算法是指不考虑每次权重的修正是否可以使优化效果得到提升,有错误的分割则进行一次权重修正.这种情况下我们不能保证一定会…
机器学习及其基础概念简介 作者:白宁超 2016年12月23日21:24:51 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结合视频学习和书籍基础的笔记所得.本系列文章将采用理论结合实践方式编写.首先介绍机器学习和深度学习的范畴,然后介绍关于训练集.测试集等介绍.接着分别介绍机器学习常用算法,分别是监督学习之分类(决策树.临近取样.支持向量机.神经网络算法)监督学习之回归(线性回归.非线性回归)非监督学习(K-means聚…
Lecture17 Large Scale Machine Learning大规模机器学习 17.1 大型数据集的学习 Learning With Large Datasets 如果有一个低方差的模型, 通常通过增加数据集的规模,可以获得更好的结果. 但是如果数据集特别大,则首先应该检查这么大规模是否真的必要,也许只用 1000个训练集也能获得较好的效果,可以绘制学习曲线来帮助判断. 17.2 随机梯度下降法 Stochastic Gradient Descent 如果必须使用一个大规模的训练集…
绘制了一张导图,有不对的地方欢迎指正: 下载地址 机器学习中,特征是很关键的.其中包括,特征的提取和特征的选择.他们是降维的两种方法,但又有所不同: 特征抽取(Feature Extraction):Creatting a subset of new features by combinations of the exsiting features.也就是说,特征抽取后的新特征是原来特征的一个映射. 特征选择(Feature Selection):choosing a subset of all…