[BZOJ 4537][Hnoi 2016]最小公倍数】的更多相关文章

传送门 并查集+分块 看到题目可以想到暴力做法, 对于每个询问, 将所有a和b小于等于询问值的的边加入图中(用并查集), 如果询问的u和v在一个联通块中, 且该联通块的maxa和maxb均等与询问的a和b, 则答案为Yes. 显然暴力是过不了的,于是可以用分块. 将所有边按a值升序排序,分成√m 块操作, 设每块第一条边为sp,每块长度为len, 每次操作将edge[sp].a<=a<edge[sp+len].a的询问加入询问序列, 将询问序列按b升序排列. 对于边可以分成两部分: 1.当前块…
Description 题库链接 给定一张 \(N\) 个顶点 \(M\) 条边的无向图(顶点编号为 \(1,2,\cdots,n\) ),每条边上带有权值.所有权值都可以分解成 \(2^a\times 3^b\) 的形式. \(q\) 个询问,每次询问给定四个参数 \(u,v,a,b\) ,请你求出是否存在一条顶点 \(u\) 到 \(v\) 之间的路径,使得路径依次经过的边上的权值的最小公倍数为 \(2^a\times 3^b\) . \(1\leq n,q\leq 50000,1\leq…
题目传送门 传送点I 传送点II 题目大意 给定一个长度为$n$的序列.询问区间$[l, r]$的所有不同的子序列的最小值的和. 这里的子序列是连续的.两个子序列不同当且仅当它们的左端点或右端点不同. 不会直接上神奇数据结构的做法. 考虑莫队.当在一段右边加入一个数后,考虑它产生的贡献. 首先找到加入后这一段的最小值,那么左端点在它的左侧的时候这个最小值做出贡献. 对于它右边到新加入的数新造成的贡献用同样的方法计算,期望下多带个$log$,然后题目没说数据随机. 考虑右边这一部分其实被算重了许多…
Description 题库链接 给你一棵 \(N\) 个节点根节点为 \(1\) 的有根树,结点的编号为 \(1\sim N\) :我们称这颗树为模板树.需要通过这棵模板树来构建一颗大树.构建过程如下: 将模板树复制为初始的大树: 以下 2.1 2.2 2.3 步循环执行 \(M\) 次: 2.1. 选择两个数字 \(a,b\) ,其中 \(1\leq a\leq N,1\leq b\leq 当前大树的结点数\) : 2.2. 将模板树中以结点 \(a\) 为根的子树复制一遍,挂到大树中结点…
[LOJ 2083][UOJ 219][BZOJ 4650][NOI 2016]优秀的拆分 题意 给定一个字符串 \(S\), 求有多少种将 \(S\) 的子串拆分为形如 AABB 的拆分方案 \(|S|\le 30000\) (\(95\%\) 数据 \(|S|\le 2000\)) 题解 考场上遇见这题直接打95分暴力哈希跑路就完事了吧 \(O(n^2)\) 暴力就直接枚举所有子串看它是不是 AA 型的, 在左右端点处分别标记一下, 然后枚举断点把两边的方案数乘起来就完事了. 考虑优化这个暴…
[BZOJ 4455] [ZJOI 2016] 小星星 (树形dp+容斥原理+状态压缩) 题面 给出一棵树和一个图,点数均为n,问有多少种方法把树的节点标号,使得对于树上的任意两个节点u,v,若树上u,v之间有一条边,图上u,v对应的点之间也有一条边. \(n \leq 17\) 分析 看到\(n \leq 17\),我们应该想到状态压缩.但直接用子集dp的时间复杂度为\(O(3^nn^3)\),会TLE.所以我们压缩的状态可能有问题,考虑优化. 显然题目给了两个限制: 原树中的每条边都要在图中…
题目大意 切糕是 (p times q times r) 的长方体,每个点有一个违和感 (v_{x, y, z}).先要水平切开切糕(即对于每个纵轴,切面与其有且只有一个交点),要求水平上相邻两点的切面高度差小于等于 (D),求切面违和感和的最小值. (1 leqslant p, ; q, ; r leqslant 40) (0 leqslant v leqslant 1,000) 题目链接 BZOJ 3144 CodeVS 2997 题解 最小割. 用边连接相邻两个高度的的点,边 ((x, y…
4537: [Hnoi2016]最小公倍数 题意:一张边权无向图,多组询问u和v之间有没有一条a最大为a',b最大为b'的路径(不一定是简单路径) 首先想到暴力做法,题目要求就是判断u和v连通,并查集把\(a<a' \land b<b'\)的边加入 然后想了一下特殊的莫队,不可做.不能按权值分块,因为同一个权值会有很多边,并且删除操作不好处理 发现这其实是一个偏序关系,但是无法用cdq分治,因为它要求所有满足偏序小的元素同时存在于某种组织形式中 使用分块 权值用\((a,b)\)表示 边按a排…
Description 给定一张N个顶点M条边的无向图(顶点编号为1,2,-,n),每条边上带有权值.所有权值都可以分解成2^a*3^b的形式.现在有q个询问,每次询问给定四个参数u.v.a和b,请你求出是否存在一条顶点u到v之间的路径,使得路径依次经过的边上的权值的最小公倍数为2^a*3^b.注意:路径可以不是简单路径.下面是一些可能有用的定义:最小公倍数:K个数a1,a2,-,ak的最小公倍数是能被每个ai整除的最小正整数.路径:路径P:P1,P2,-,Pk是顶点序列,满足对于任意1<=i<…
给定一张N个顶点M条边的无向图 每条边上带有权值 所有权值都可以分解成2^a*3^b的形式 q个询问,每次询问给定四个参数u.v.a和b,请你求出是否存在一条顶点u到v之间的路径,使得路径依次经过的边上的权值的最小公倍数为2^a*3^b 注意:路径可以不是简单路径 下面是一些可能有用的定义: 最小公倍数:K个数a1,a2,…,ak的最小公倍数是能被每个ai整除的最小正整数 路径:路径P:P1,P2,…,Pk是顶点序列,满足对于任意1<=i<k,节点Pi和Pi+1之间都有边相连 简单路径:如果路…