Tensorflow学习笔记(1)--安装】的更多相关文章

1. 准备好Anaconda环境 具体参见:http://blog.csdn.net/zhdgk19871218/article/details/46502637 2. 建立名叫TensorFlow的计算环境 # Python 2.7 $ conda create -n tensorflow python=2.7 # Python 3.6 $ conda create -n tensorflow python=3.6 3. 激活TensorFlow环境,然后用pip安装TensorFlow 激活…
续集请点击我:tensorflow学习笔记——使用TensorFlow操作MNIST数据(2) 本节开始学习使用tensorflow教程,当然从最简单的MNIST开始.这怎么说呢,就好比编程入门有Hello World,机器学习入门有MNIST.在此节,我将训练一个机器学习模型用于预测图片里面的数字. 开始先普及一下基础知识,我们所说的图片是通过像素来定义的,即每个像素点的颜色不同,其对应的颜色值不同,例如黑白图片的颜色值为0到255,手写体字符,白色的地方为0,黑色为1,如下图. MNIST…
TensorFlow学习笔记0-安装TensorFlow环境 作者: YunYuan 转载请注明来源,谢谢! 写在前面 系统: Windows Enterprise 10 x64 CPU:Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz GPU: NVIDIA GeForce GTX 1050 Ti 所以本笔记记录Win10 64位系统下,TensorFlow的GPU版开发环境的搭建. TensorFlow-GPU环境安装 首先下载安装Anaconda,版本不受限制…
http://www.cnblogs.com/denny402/p/5852083.html tensorflow学习笔记二:入门基础   TensorFlow用张量这种数据结构来表示所有的数据.用一阶张量来表示向量,如:v = [1.2, 2.3, 3.5] ,如二阶张量表示矩阵,如:m = [[1, 2, 3], [4, 5, 6], [7, 8, 9]],可以看成是方括号嵌套的层数. 1.编辑器 编写tensorflow代码,实际上就是编写py文件,最好找一个好用的编辑器,如果你用vim或…
简介 上一篇笔记:Tensorflow学习笔记1:Get Started 我们谈到Tensorflow是基于图(Graph)的计算系统.而图的节点则是由操作(Operation)来构成的,而图的各个节点之间则是由张量(Tensor)作为边来连接在一起的.所以Tensorflow的计算过程就是一个Tensor流图.Tensorflow的图则是必须在一个Session中来计算.这篇笔记来大致介绍一下Session.Graph.Operation和Tensor. Session Session提供了O…
Tomcat安装 通常情况下我们要配置Tomcat是很容易的一件事情,但是如果您要架设多用户多服务的Java虚拟主机就不那么容易了.其中最大的一个问题就是Tomcat执行权限.普通方式配置的Tomcat是以root超级管理员的身份运行的,显然,这是非常危险的,可想而知,一但网站被挂马,您的整个服务器都可以被黑客控制了.而通过编译或在线(例如redhat系列的yum, debian系列的apt-get)的方式安装,一个服务器上又只能装一个tomcat的服务,如果将多个网站放到同一个tomcat服务…
tensorflow学习笔记2 edit by Strangewx 2019.01.04 4.1 机器学习基础 4.1.1 一般结构: 初始化模型参数:通常随机赋值,简单模型赋值0 训练数据:一般打乱.random.shuffle() 在训练数据上推断模型:得到输出 计算损失:loss(X, Y)多种损失函数 调整模型参数:最小化损失 SGD等优化方法. 评估:70%:30% 分训练集和校验集 代码框架: 首先模型参数初始化, 然后为每个训练闭环中的运算定义一个方法:读取训练数据input,计算…
tensorflow学习笔记: 3.2 Tensorflow中定义数据流图 张量知识矩阵的一个超集. 超集:如果一个集合S2中的每一个元素都在集合S1中,且集合S1中可能包含S2中没有的元素,则集合S1就是S2的一个超集,反过来,S2是S1的子集. 张量形状: 固定长度: [],() 0阶次:[3],(2,3) 1/2阶次 不定长度:[None] 表示任意长度的向量,(None,3) 表示行数任意,3列的矩阵 获取Op:tf.shape(tensor, name="tensor_shape&qu…
I optimizer.minimize(loss, var_list) 我们都知道,TensorFlow为我们提供了丰富的优化函数,例如GradientDescentOptimizer.这个方法会自动根据loss计算对应variable的导数.示例如下: loss = ... opt = tf.tf.train.GradientDescentOptimizer(learning_rate=0.1) train_op = opt.minimize(loss) init = tf.initiali…
OracleDesigner学习笔记1――安装篇   QQ:King MSN:qiutianwh@msn.com Email:qqking@gmail.com 一.       前言 Oracle是当今最流行的关系型数据库之一,和很多朋友一样,我也是一个Oracle的爱好者,从开始的7.3(我所接触的第一个版本)到现在的10G,可以说Oracle公司每推出一个新的版本,都有很多令人激动的新东西带给我们,这可能也是令广大朋友着迷的地方吧. 众所周之,Oracle公司并仅仅是一个关系型数据库厂商,她…