首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
拉普拉斯矩阵(Laplacian Matrix) 及半正定性证明
】的更多相关文章
拉普拉斯矩阵(Laplacian Matrix) 及半正定性证明
摘自 https://blog.csdn.net/beiyangdashu/article/details/49300479 和 https://en.wikipedia.org/wiki/Laplacian_matrix 定义 给定一个由n个顶点的简单图G,它的拉普拉斯矩阵定义为: L = D - A,其中,D是该图G度的矩阵,A为图G的邻接矩阵. 因为G是一个简单图,A只包含0,1,并且它的对角元素均为0. L中的元素给定为: 其中deg(vi) 表示顶点 i 的度. 对称归一化的拉普拉斯…
SC3聚类 | 拉普拉斯矩阵 | Laplacian matrix | 图论 | R代码
Laplacian和PCA貌似是同一种性质的方法,坐标系变换.只是拉普拉斯属于图论的范畴,术语更加专业了. 要看就把一篇文章看完整,再看其中有什么值得借鉴的,总结归纳理解后的东西才是属于你的. 问题: 1. 这篇文章有哪些亮点决定他能发NM?单细胞,consensus,较好的表现,包装了一些专业的术语,显得自己很专业,其实真正做的东西很少: 2. consensus方法的本质是什么? 3. 工具的评估准则?ARI,silhouette index 4. SC3的最大缺点是什么?速度太慢,超过10…
拉普拉斯矩阵(Laplacian matrix)
原文地址:https://www.jianshu.com/p/f864bac6cb7a 拉普拉斯矩阵是图论中用到的一种重要矩阵,给定一个有n个顶点的图 G=(V,E),其拉普拉斯矩阵被定义为 L = D-A,D其中为图的度矩阵,A为图的邻接矩阵.例如,给定一个简单的图,如下(例子来自wiki百科): 把此“图”转换为邻接矩阵的形式,记为A: 把W的每一列元素加起来得到N个数,然后把它们放在对角线上(其它地方都是零),组成一个N×N的对角矩阵,记为度矩阵D,如下图所示.其实度矩阵(…
拉普拉斯矩阵(Laplace Matrix)与瑞利熵(Rayleigh quotient)
作者:桂. 时间:2017-04-13 07:43:03 链接:http://www.cnblogs.com/xingshansi/p/6702188.html 声明:欢迎被转载,不过记得注明出处哦~ 前言 前面分析了非负矩阵分解(NMF)的应用,总觉得NMF与谱聚类(Spectral clustering)的思想很相似,打算分析对比一下.谱聚类更像是基于图(Graph)的思想,其中涉及到一个重要概念就是拉普拉斯矩阵(Laplace matrix),想着先梳理一下这个矩阵: 1)拉普拉斯矩阵基…
graph Laplacian 拉普拉斯矩阵
转自:https://www.kechuang.org/t/84022?page=0&highlight=859356,感谢分享! 在机器学习.多维信号处理等领域,凡涉及到图论的地方,相信小伙伴们总能遇到和拉普拉斯矩阵和其特征值有关的大怪兽.哪怕过了这一关,回想起来也常常一脸懵逼,拉普拉斯矩阵为啥被定义成 ?这玩意为什么冠以拉普拉斯之名?为什么和图论有关的算法如此喜欢用拉普拉斯矩阵和它的特征值? 最近读论文的时候,刚好趁机温习了一下相应的内容,寻本朔源一番,记录下来,希望大家阅读之后,也能够有…
从矩阵(matrix)角度讨论PCA(Principal Component Analysis 主成分分析)、SVD(Singular Value Decomposition 奇异值分解)相关原理
0. 引言 本文主要的目的在于讨论PAC降维和SVD特征提取原理,围绕这一主题,在文章的开头从涉及的相关矩阵原理切入,逐步深入讨论,希望能够学习这一领域问题的读者朋友有帮助. 这里推荐Mit的Gilbert Strang教授的线性代数课程,讲的非常好,循循善诱,深入浅出. Relevant Link: Gilbert Strang教授的MIT公开课:数据分析.信号处理和机器学习中的矩阵方法 https://mp.weixin.qq.com/s/gi0RppHB4UFo4Vh2Neonfw 1.…
R语言编程艺术# 矩阵(matrix)和数组(array)
矩阵(matrix)是一种特殊的向量,包含两个附加的属性:行数和列数.所以矩阵也是和向量一样,有模式(数据类型)的概念.(但反过来,向量却不能看作是只有一列或一行的矩阵. 数组(array)是R里更一般的对象,矩阵是数组的一个特殊情形.数组可以是多维的.例如:一个三维数组可以包含行.列和层(layer),而一个矩阵只有行和列两个维度 1.创建矩阵 矩阵的行和列的下标都是从1开始,如:矩阵a左上角的元素记作a[1,1].矩阵在R中是按列存储的,也就是说先存储第一列,再存储第二列,以此类推. > y…
R语言编程艺术#02#矩阵(matrix)和数组(array)
矩阵(matrix)是一种特殊的向量,包含两个附加的属性:行数和列数.所以矩阵也是和向量一样,有模式(数据类型)的概念.(但反过来,向量却不能看作是只有一列或一行的矩阵. 数组(array)是R里更一般的对象,矩阵是数组的一个特殊情形.数组可以是多维的.例如:一个三维数组可以包含行.列和层(layer),而一个矩阵只有行和列两个维度 1.创建矩阵 矩阵的行和列的下标都是从1开始,如:矩阵a左上角的元素记作a[1,1].矩阵在R中是按列存储的,也就是说先存储第一列,再存储第二列,以此类推. > y…
OpenGL投影矩阵(Projection Matrix)构造方法
(翻译,图片也来自原文) 一.概述 绝大部分计算机的显示器是二维的(a 2D surface).在OpenGL中一个3D场景需要被投影到屏幕上成为一个2D图像(image).这称为投影变换(参见这或这),需要用到投影矩阵(projection matrix). 首先,投影矩阵会把所有顶点坐标从eye coordinates(观察空间,eye space或view space)变换到裁剪坐标(clip coordinated,属于裁剪空间,clip space).然后,这些裁剪坐标被变换到标准化设…
【Math for ML】矩阵分解(Matrix Decompositions) (下)
[Math for ML]矩阵分解(Matrix Decompositions) (上) I. 奇异值分解(Singular Value Decomposition) 1. 定义 Singular Value Decomposition (SVD)是线性代数中十分重要的矩阵分解方法,被称为"线性代数的基本理论",因为它不仅可以运用于所有矩阵(不像特征值分解只能用于方阵),而且奇异值总是存在的. SVD定理 设一个矩阵\(A^{m×n}\)的秩为\(r∈[0,min(m,n)]\),矩阵…