HDU 2239 polya计数 欧拉函数】的更多相关文章

这题模数是9937还不是素数,求逆元还得手动求. 项链翻转一样的算一种相当于就是一种类型的置换,那么在n长度内,对于每个i其循环节数为(i,n),但是由于n<=2^32,肯定不能直接枚举,所有考虑枚举gcd,对应的n/gcd就是其个数,有点容斥的思想.全部累加最后除以n就计算好染色方案了. 注意这题很卡时间,而且很玄的用long long会错,要先求出上界再枚举,循环中i*i的循环条件会很慢. /** @Date : 2017-09-18 23:33:30 * @FileName: HDU 22…
这两个题都是项链珠子的染色问题 也是polya定理的最基本和最经典的应用之一 题目大意: 用m种颜色染n个珠子构成的项链,问最终形成的等价类有多少种 项链是一个环.通过旋转或者镜像对称都可以得到置换 旋转可以旋转 i=[1,n]次..画图可以看出循环节有gcd(n,i)个 镜像对称的置换画个图也是很容易找的 然后通过polya定理就可以容易的求出等价类的种数了 2409就是这样一个裸题,以下为ac代码 #include <iostream> #include <stdio.h> #…
http://poj.org/problem?id=2154 大致题意:由n个珠子,n种颜色,组成一个项链.要求不同的项链数目.旋转后一样的属于同一种.结果模p. n个珠子应该有n种旋转置换.每种置换的循环个数为gcd(i,n).假设直接枚举i,显然不行.可是我们能够缩小枚举的数目. 改为枚举每一个循环节的长度L,那么对应的循环节数是n/L.所以我们仅仅需求出每一个L有多少个i满足gcd(i,n)= n/L.就得到了循环节数为n/L的个数. 重点就是求出这种i的个数. 令cnt = gcd(i,…
题目描述 $T$ 组询问,用 $n$ 种颜色去染 $n$ 个点的环,旋转后相同视为同构.求不同构的环的个数模 $p$ 的结果. $T\le 3500,n\le 10^9,p\le 30000$ . 题解 Polya定理+欧拉函数 根据 poj2409 中得到的结论,答案为: $\frac{\sum\limits_{i=1}^nn^{\gcd(i,n)}}n=\sum\limits_{i=1}^nn^{\gcd(i,n)-1}$ 由于 $n$ 有 $10^9$ 之大,因此考虑优化这个式子. 枚举…
GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 4272    Accepted Submission(s): 1492 Problem Description Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y)…
题目: http://acm.hdu.edu.cn/showproblem.php?pid=5430 从镜面材质的圆上一点发出一道光线反射NNN次后首次回到起点. 问本质不同的发射的方案数. 输入描述 第一行一个整数T,表示数据组数.T≤10T \leq 10T≤10 对于每一个组,共一行,包含一个整数,表示正整数N(1≤N≤106)N(1 \leq N \leq 10^{6})N(1≤N≤10​6​​). 输出描述 对于每一个组,输出共一行,包含一个整数,表示答案. 输入样例 1 4 输出样例…
Reflect Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://bestcoder.hdu.edu.cn/contests/contest_chineseproblem.php?cid=628&pid=1003 Description 从镜面材质的圆上一点发出一道光线反射NN次后首次回到起点. 问本质不同的发射的方案数. Input 第一行一个整数T,表示数据组数.T \leq 20T≤20 对于每一个组,第一行一个整数n(1 \leq n…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意:x位于区间[a, b],y位于区间[c, d],求满足GCD(x, y) = k的(x, y)有多少组,不考虑顺序. 思路:a = c = 1简化了问题,原问题可以转化为在[1, b/k]和[1, d/k]这两个区间各取一个数,组成的数对是互质的数量,不考虑顺序.我们让d > b,我们枚举区间[1, d/k]的数i作为二元组的第二位,因为不考虑顺序我们考虑第一位的值时,只用考虑小于i的情…
由于这是第一天去实现polya题,所以由易到难,先来个铺垫题(假设读者是看过课件的,不然可能会对有些“显然”的地方会看不懂): 一:POJ1286 Necklace of Beads :有三种颜色,问可以翻转,可以旋转的染色方案数,n<24. 1,n比较小,恶意的揣测出题人很有可能出超级多组数据,所以先打表. 2,考虑旋转: ;i<n;i++) sum+=pow(n,gcd(n,i)); 3,考虑翻转: ) sum+=n*pow(,n/+) ; else { sum+=n/*pow(,n/)…
没想到贱贱的数据居然是错的..搞得我调了一中午+晚上一小时(哦不d飞LJH掉RP毕竟他是BUFF)结果重判就对了五次.. 回归正题,这题傻子都看得出是polya定理(如果你不是傻子就看这里),还没有翻转,就一个旋转,结果我就欢快的打完交上去了.傻子都知道会TLE,n<=1e9啊,O(n)都原地爆炸,那怎么办...一脸懵逼(然后就膜题解了) 可以发现,这题公式就是sigma(gcd(k,n))(k=1~n),然后该怎么优化呢,我(??)发现gcd(k,n)里面肯定有一些k和n的gcd是相同的,那我…