小结:trie】的更多相关文章

复杂度: 查找O(n),维护O(n),空间O(sum(len[i])) 概要: 就是每个节点对应一个字母,然后儿子有26个,查找和维护时进入对应儿子即可. 应用:在字符串匹配中多模匹配做基础结构:可以对多个字符串维护信息. 技巧及注意: 只要注意儿子节点该开多大即可.比如中秋节模拟赛之冷月葬花魂(被虐瞎)中的t1,有大小写,那么开大点儿子即可 模板请看AC自动机部分…
http://www.cnblogs.com/LBSer/p/4068864.html 随着业务快速发展,基于lucene的索引文件zip压缩后也接近了GB量级,而保持索引文件大小为一个可以接受的范围非常有必要,不仅可以提高索引传输.读取速度,还能提高索引cache效率(lucene打开索引文件的时候往往会进行缓存,比如MMapDirectory通过内存映射方式进行缓存). 如何降低我们的索引文件大小呢?本文进行了一些尝试,下文将一一介绍. 1 数值数据类型索引优化 1.1 数值类型索引问题 l…
[xsy1629]可持久化序列 - 可持久化平衡树 http://www.cnblogs.com/Sdchr/p/6258827.html [bzoj4260]REBXOR - Trie 事实上只是一道Trie树的题. 只是被林导钦定成可持久化的了. 区间异或和,转化为前缀异或和. 预处理向前最大的异或和,向后最大的异或和,和前缀最大异或和,枚举分割点求答案. #include <cstdio> #include <cctype> #include <climits>…
剑指Offer--Trie树(字典树) Trie树 Trie树,即字典树,又称单词查找树或键树,是一种树形结构,是一种的单词.对于每一个单词,我们要判断他出没出现过,如果出现了,求第一次出现在第几个位置. 分析:这题当然可以用hash来解决,但是本文重点介绍的是trie树,因为在某些方面它的用途更大.比如说对于某一个单词,我们要询问它的前缀是否出现过.这样hash就不好搞了,而用trie还是很简单. 假设我要查询的单词是abcd,那么在他前面的单词中,以b,c,d,f之类开头的我显然不必考虑.而…
整体二分和CDQ分治 有一些问题很多时间都坑在斜率和凸壳上了么--感觉斜率和凸壳各种搞不懂-- 整体二分 整体二分的资料好像不是很多,我在网上找到了一篇不错的资料:       整体二分是个很神的东西,它可以把许多复杂的数据结构题化简.它的精髓在于巧妙地利用了离线的特点,把所有的修改.询问操作整体把握.       先说说第k大数吧,这种问题是整体二分的标志性题目,什么划分树啊,主席树啊,树套树啊见了整体二分都得自叹不如.首先对于一次询问来说我们可以二分答案,然后通过验证比答案大的数有多少个来不…
最近面试一些公司,被问到的关于Elasticsearch和搜索引擎相关的问题,以及自己总结的回答. Elasticsearch是如何实现Master选举的? Elasticsearch的选主是ZenDiscovery模块负责的,主要包含Ping(节点之间通过这个RPC来发现彼此)和Unicast(单播模块包含一个主机列表以控制哪些节点需要ping通)这两部分: 对所有可以成为master的节点(node.master: true)根据nodeId字典排序,每次选举每个节点都把自己所知道节点排一次…
Trie树入门 貌似很多人会认为\(Trie\)是字符串类型,但是这是数据结构!!!. 详情见度娘 下面开始进入正题. PS:本文章所有代码未经编译,有错误还请大家指出. 引入 先来看一个问题 ​ 给定一本字典中的\(n\)个单词,还有\(m\)个询问.每次询问询问一个单词是否出现在这\(n\)个单词中. 暴力 最简单的就是暴力做法啦,我们直接枚举去判别对应位置,还可以再加点优化. 即:长度不同,肯定不是同一个单词. for(int l;m;m--) { bool flg=false; scan…
AC自动机 简要说明 \(AC\) 自动机,全称 \(Aho-Corasick\ automaton\) ,是一种有限状态自动机,应用于多模式串匹配.在 \(OI\) 中通常搭配 \(dp\) 食用.因为它是状态自动机. 感性理解:在 \(Trie\) 树上加上 \(fail\) 指针.具体的讲解可以去看dalao们的博客(因为我实在是太菜了讲不好). 题目 Keywords Search 题目:给若干个模式串,再给一个文本串,问有几个模式串在文本串中出现过. 板子题.注意一个模式串只被计算一次…
B  树 即二叉搜索树: 1.所有非叶子结点至多拥有两个儿子(Left和Right): 2.所有结点存储一个关键字: 3.非叶子结点的左指针指向小于其关键字的子树,右指针指向大于其关键字的子树: 如: B树的搜索,从根结点开始,如果查询的关键字与结点的关键字相等,那么就命中:否则,如果查询关键字比结点关键字小,就进入左儿子:如果比结点关键字大,就进入右儿子:如果左儿子或右儿子的指针为空,则报告找不到相应的关键字: 如果B树的所有非叶子结点的左右子树的结点数目均保持差不多(平衡),那么B树的搜索性…
一直想写个总结,不过实在太忙了,所以一直拖啊拖啊,拖到现在,不过也好,有了这段时间的沉淀,发现自己又有了小小的进步.哈哈...... 原想框架开发的相关开发步骤.文档.代码.功能.部署等都简单的讲过了,就此了结本系列文章,经过这段日子的深入学习,发现本系列文章讲的还是太肤浅了,很多东西都没有讲到,也没有说明白.所以过段时间空闲些了,会继续从理论上来讲解怎么去设计一个框架(也算是给自己定个目标,加加压力),有了前面的代码了解,再学习理论相信大家也更容易接受了. 小结 学习如逆水行舟,不进则退,当能…
Python自然语言处理工具小结 作者:白宁超 2016年11月21日21:45:26 目录 [Python NLP]干货!详述Python NLTK下如何使用stanford NLP工具包(1) [Python NLP]Python 自然语言处理工具小结(2) [Python NLP]Python NLTK 走进大秦帝国(3) [Python NLP]Python NLTK获取文本语料和词汇资源(4) [Python NLP]Python NLTK处理原始文本(5) 1 Python 的几个自…
上一篇文章整理了Base64算法的相关知识,严格来说,Base64只能算是一种编码方式而非加密算法,这一篇要说的MD5,其实也不算是加密算法,而是一种哈希算法,即将目标文本转化为固定长度,不可逆的字符串(消息摘要). 简单了解 MD5(Message Digest Algorithm 5),翻译过来是消息摘要算法第五版,按照惯例,我们推理可能也有MD2,MD3这样名字的历史版本.. 即使完全不了解这个算法的原理,我们也可以从命名中看出一些眉道,所谓摘要,就是一个简短的概括,像我写过的毕业论文,上…
iOS--->微信支付小结 说起支付,除了支付宝支付之外,微信支付也是我们三方支付中最重要的方式之一,承接上面总结的支付宝,接下来把微信支付也总结了一下 ***那么首先还是由公司去创建并申请使用微信支付所需的信息 1.接下来就是微信支付的集成步骤了,参考着开发文档来,非常简单的 下载SDK,项目中导入所需的文件WxPay文件夹中,注意其中的.a文件容易丢失 2.根据文档对其中支持的非arc进行设置 3.设置微信支付的URL types 4.接下来就是代码内部的事情了,做支付我们知道首先需要在ap…
一:编辑被键盘遮挡的问题 参考自:http://blog.csdn.net/windkisshao/article/details/21398521 1.自定方法 ,用于移动视图 -(void)moveInputBarWithKeyboardHeight:(float)_CGRectHeight withDuration:(NSTimeInterval)_NSTimeInterval; 2.注册监听 NSNotificationCenter *defaultCenter = [NSNotific…
K近邻法(k-nearst neighbors,KNN)是一种很基本的机器学习方法了,在我们平常的生活中也会不自主的应用.比如,我们判断一个人的人品,只需要观察他来往最密切的几个人的人品好坏就可以得出了.这里就运用了KNN的思想.KNN方法既可以做分类,也可以做回归,这点和决策树算法相同. KNN做回归和分类的主要区别在于最后做预测时候的决策方式不同.KNN做分类预测时,一般是选择多数表决法,即训练集里和预测的样本特征最近的K个样本,预测为里面有最多类别数的类别.而KNN做回归时,一般是选择平均…
在Bagging与随机森林算法原理小结中,我们对随机森林(Random Forest, 以下简称RF)的原理做了总结.本文就从实践的角度对RF做一个总结.重点讲述scikit-learn中RF的调参注意事项,以及和GBDT调参的异同点. 1. scikit-learn随机森林类库概述 在scikit-learn中,RF的分类类是RandomForestClassifier,回归类是RandomForestRegressor.当然RF的变种Extra Trees也有, 分类类ExtraTreesC…
在集成学习原理小结中,我们讲到了集成学习有两个流派,一个是boosting派系,它的特点是各个弱学习器之间有依赖关系.另一种是bagging流派,它的特点是各个弱学习器之间没有依赖关系,可以并行拟合.本文就对集成学习中Bagging与随机森林算法做一个总结. 随机森林是集成学习中可以和梯度提升树GBDT分庭抗礼的算法,尤其是它可以很方便的并行训练,在如今大数据大样本的的时代很有诱惑力. 1.  bagging的原理 在集成学习原理小结中,我们给Bagging画了下面一张原理图. 从上图可以看出,…
在梯度提升树(GBDT)原理小结中,我们对GBDT的原理做了总结,本文我们就从scikit-learn里GBDT的类库使用方法作一个总结,主要会关注调参中的一些要点. 1. scikit-learn GBDT类库概述 在sacikit-learn中,GradientBoostingClassifier为GBDT的分类类, 而GradientBoostingRegressor为GBDT的回归类.两者的参数类型完全相同,当然有些参数比如损失函数loss的可选择项并不相同.这些参数中,类似于Adabo…
在集成学习之Adaboost算法原理小结中,我们对Boosting家族的Adaboost算法做了总结,本文就对Boosting家族中另一个重要的算法梯度提升树(Gradient Boosting Decison Tree, 以下简称GBDT)做一个总结.GBDT有很多简称,有GBT(Gradient Boosting Tree), GTB(Gradient Tree Boosting ), GBRT(Gradient Boosting Regression Tree), MART(Multipl…
在集成学习之Adaboost算法原理小结中,我们对Adaboost的算法原理做了一个总结.这里我们就从实用的角度对scikit-learn中Adaboost类库的使用做一个小结,重点对调参的注意事项做一个总结. 1. Adaboost类库概述 scikit-learn中Adaboost类库比较直接,就是AdaBoostClassifier和AdaBoostRegressor两个,从名字就可以看出AdaBoostClassifier用于分类,AdaBoostRegressor用于回归. AdaBo…
在集成学习原理小结中,我们讲到了集成学习按照个体学习器之间是否存在依赖关系可以分为两类,第一个是个体学习器之间存在强依赖关系,另一类是个体学习器之间不存在强依赖关系.前者的代表算法就是是boosting系列算法.在boosting系列算法中, Adaboost是最著名的算法之一.Adaboost既可以用作分类,也可以用作回归.本文就对Adaboost算法做一个总结. 1. 回顾boosting算法的基本原理 在集成学习原理小结中,我们已经讲到了boosting算法系列的基本思想,如下图: 从图中…
基于trie树做一个ac自动机 #!/usr/bin/python # -*- coding: utf-8 -*- class Node: def __init__(self): self.value = None self.children = {} # children is of type {char, Node} self.fre = 0 self.father = None self.fail = None def CMP(a, b): return b.fre - a.fre cla…
之前的软件设计与开发实践课程中,自己构思的大作业题目.做的具有核心功能,但是还欠缺边边角角的小功能和持久化数据结构,先放出来,有机会一点点改.github:https://github.com/chuxiuhong/smarteditor 数据结构,使用过程截图以及源代码如下: #数据结构 **trie树** trie树相应的介绍点击链接 https://en.wikipedia.org/wiki/Trie trie树在python文件中的类型定义 Node定义 #GUI设计界面 首先,用较大的…
前言 总括:详细讲述Cookie,LocalStorge,SesstionStorge的区别和用法. 人生如画,岁月如歌. 原文博客地址:Javascript本地存储小结 知乎专栏&&简书专题:前端进击者(知乎)&&前端进击者(简书) 1. 各种存储方案的简单对比 Cookies:浏览器均支持,容量为4KB UserData:仅IE支持,容量为64KB Flash:100KB,非HTML原生,需要插件支持 Google Gears SQLite :需要插件支持,容量无限制…
写在前面 HTML5出来已经很久了,然而由于本人不是专业搞前端的,只知道有这个东西,具体概念有点模糊(其实就是一系列标准规范啦):因此去年(2015.11.09),专门对HTML5做了个简单的小结,今天正好看到,整理一下放到我的博客,以免丢失.有错误请指正. 另外,转载请注明链接http://www.cnblogs.com/chenpi/p/5578011.html,虽然内容比较简单,但也是花了不少时间整理的. 什么是HTML5 简单地说,HTML5就是一系列用来制定现代富Web内容的相关技术的…
Implement a trie with insert, search, and startsWith methods. Note:You may assume that all inputs are consist of lowercase letters a-z. 这道题让我们实现一个重要但又有些复杂的数据结构-字典树, 又称前缀树或单词查找树,详细介绍可以参见网友董的博客,例如,一个保存了8个键的trie结构,"A", "to", "tea&quo…
在segmentfault上读的一篇学习JavaScript路线的文章,做个小结. 一.简介.数据类型.表达式和操作符 (1)<JavaScript权威指南>前言1-2章&<JavaScript高级程序设计>前言1-2章. (2)权威3-4章&高设3-4章. (3)权威5章. 二.对象.数组.函数.DOM (1)权威6章&高设6章(“理解对象”部分). (2)权威7-8章&高设5,7章. (3)权威13,15,16章&高设8,9,10,11,…
hihocoder 1014 : Trie树 link: https://hihocoder.com/problemset/problem/1014 题意: 实现Trie树,实现对单词的快速统计. #include <iostream> #include <cstdio> using namespace std; typedef struct TrieNode{ int cnt; struct TrieNode *next[26]; }TrieNode; TrieNode memo…
2938: [Poi2000]病毒 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 609  Solved: 318[Submit][Status][Discuss] Description 二进制病毒审查委员会最近发现了如下的规律:某些确定的二进制串是病毒的代码.如果某段代码中不存在任何一段病毒代码,那么我们就称这段代码是安全的.现在委员会已经找出了所有的病毒代码段,试问,是否存在一个无限长的安全的二进制代码. 示例: 例如如果{011, 11,…
接触到flex一个多月了,今天做一个学习小结.如果有知识错误或者意见不同的地方.欢迎交流指教. 画外音:先说一下,我是怎么接触到flex布局的.对于正在学习的童鞋们,我建议大家没事可以逛逛网站,看看人家的源代码.至于怎么看?从浏览器已经生成的静态代码看(当然如果该公司的代码在github开源了,那就去github中看吧,也可以fork到自己的托管空间下创建派生自己改着玩.),或者去网站上下一些自己感兴趣的或者差不多效果的代码看.多看demo,多加学习. 一个月前看到国美金融美易理财的界面,网址:…