问题:w1.w2.w3.w4.w5,5个元素将会按顺序入栈,求出栈顺序有多少种情况. 先写一下结论方便记忆: 1个元素:1种 2个元素:2种 3个元素:5种 4个元素:14种 5个元素:42种 简单的分析过程如下: n个数据依次入栈,出栈顺序种数的递推公式如下:F(n)=∑(F(n-1-k)*Fk);其中k从0到n-1 已知F0=1,F1=F0*F0=1F2=F1*F0+F0*F1=2F3=F2*F0+F1*F1+F0*F2=5F4=F3*F0+F2*F1+F1*F2+F0*F3=14F5=F4…