TensorFlow——CNN实现MNIST手写体识别 2019年04月08日 21:46:19 星空Ice_ 阅读数 83   文章目录 TensorFlowCNN实现MNIST 1,数据集 2,回归模型——Softmax 3,卷积神经网络 Convolutional Neural Network - CNN 卷积 Convolution 池化 Pooling 卷积神经网络结构 函数定义 权重初始化 偏置量初始化 卷积函数 池化函数 3.1,Input layer 输入层 3.2,Convol…
初始神经网络 这里要解决的问题是,将手写数字的灰度图像(28 像素 x28 像素)划分到 10 个类别中(0~9).我们将使用 MINST 数据集,它是机器学习领域的一个经典数据集,其历史几乎和这个领域一样长,而且已被人们深入研究.这个数据集包含 60000 张训练图像和 10000 张测试图像,由美国国家标准与技术研究院(National Institute of Standards and Technology,即 MINIST 中的 NIST)在 20 世纪 80 年代收集得到.你可以将"…
title: "Python实现bp神经网络识别MNIST数据集" date: 2018-06-18T14:01:49+08:00 tags: [""] categories: ["python"] 前言 训练时读入的是.mat格式的训练集,测试正确率时用的是png格式的图片 代码 #!/usr/bin/env python3 # coding=utf-8 import math import sys import os import numpy…
RNN介绍   在读本文之前,读者应该对全连接神经网络(Fully Connected Neural Network, FCNN)和卷积神经网络( Convolutional Neural Network, CNN)有一定的了解.对于FCNN和CNN来说,他们能解决很多实际问题,但是它们都只能单独的取处理一个个的输入,前一个输入和后一个输入是完全没有关系的 .而在现实生活中,我们输入的向量往往存在着前后联系,即前一个输入和后一个输入是有关联的,比如文本,语音,视频等,因此,我们需要了解深度学习中…
最近在看这本书看到Chapter 3.Classification,是关于mnist数据集的分类,里面有个代码是 from sklearn.datasets import fetch_mldata mnist = fetch_mldata('MNIST original') mnist 我十分郁闷,因为这个根本加载不出来-_-||,报了个OSError,改了data_home之后也有error,然后我按照网上的方法改data_home也没用,弄了很久最后决定自己弄这个数据集出来(气死了) 百度搜…
1.MNIST数据集简介 首先通过下面两行代码获取到TensorFlow内置的MNIST数据集: from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('./data/mnist', one_hot=True) MNIST数据集共有55000(mnist.train.num_examples)张用于训练的数据,对应的有55000个标签:共有10000(mnist.t…
简单的训练MNIST数据集 (0-9的数字图片) 详细地址(包括下载地址):http://www.tensorfly.cn/tfdoc/tutorials/mnist_beginners.html # -*- coding: utf-8 -*- import tensorflow as tf import numpy as np import input_data # 需要下载数据集(包括了input_data)# 加载数据集 mnist = input_data.read_data_sets(…
一. Tensorflow环境的安装 这里我们只讲CPU版本,使用 Anaconda 进行安装 a.首先我们要安装 Anaconda 链接:https://pan.baidu.com/s/1AxdGi93oN9kXCLdyxOMnRA 密码:79ig 过程如下: 第一步:点击next 第二步:I Agree 第三步:Just ME 第四步:自己选择一个恰当位置放它就好 第五步:建议只选择第二个 第六步:就直接install啦啦啦啦,然后你就可以上手万能库了 b.找到Anaconda prompt…
初学tensorflow,参考了以下几篇博客: soft模型 tensorflow构建全连接神经网络 tensorflow构建卷积神经网络 tensorflow构建卷积神经网络 tensorflow构建CNN[待学习] 全连接+各种优化[待学习] BN层[待学习] 先解释以下MNIST数据集,训练数据集有55,000 条,即X为55,000 * 784的矩阵,那么Y为55,000 * 10的矩阵,每个图片是28像素*28像素,带有标签,Y为该图片的真实数字,即标签,每个图片10个数字,1所在位置…
MNIST数据集,每张图片包含28*28个像素,把一个数组展开成向量,长度为28*28=784,故数据集中mnist.train.images是一个形状为[60000,784]的张量,第一个维度数字用来索引图片,第二个维度数字用来索引每张图片的像素点,像素的强度介于0-1. MNIST数据集的标签是介于0-9的数字,要把标签转化成“one_hot vectors". 一个one_hot向量除了某一位数字是1以外,其余维度数字都是0,比如将标签0表示为([1,0,0,0,0,0,0,0,0,0])…