1前言 本节主要是让人用矢量化编程代替效率比较低的for循环. 在前一节的Sparse Autoencoder练习中已经实现了矢量化编程,所以与前一节的区别只在于本节训练集是用MINIST数据集,而上一节训练集用的是从10张图片中随机选择的8*8的10000张小图块.综上,只需要在前一节的代码中稍微修改一下就可. 2练习步骤 1.下载数据集及UFLDL提供的加载数据集的函数,并把他们和上节程序放在同一文件夹中.要注意的是UFLDL提供的加载数据集的函数中程序用的数据集名称是train-image…
前言 练习内容:Exercise:Softmax Regression.完成MNIST手写数字数据库中手写数字的识别,即:用6万个已标注数据(即:6万张28*28的图像块(patches)),作训练数据集,然后利用其训练softmax分类器,再用1万个已标注数据(即:1万张28*28的图像块(patches))作为测试数据集,用前面训练好的softmax分类器对测试数据集进行分类,并计算分类的正确率. 注意:本实验中,只用原始数据本身作训练集,而并不是从原始数据中提取特征作训练集. 理论知识:S…
1前言 本人写技术博客的目的,其实是感觉好多东西,很长一段时间不动就会忘记了,为了加深学习记忆以及方便以后可能忘记后能很快回忆起自己曾经学过的东西. 首先,在网上找了一些资料,看见介绍说UFLDL很不错,很适合从基础开始学习,Adrew Ng大牛写得一点都不装B,感觉非常好,另外对我们英语不好的人来说非常感谢,此教程的那些翻译者们!如余凯等.因为我先看了一些深度学习的文章,但是感觉理解得不够,一般要自己编程或者至少要看懂别人的程序才能理解深刻,所以我根据该教程的练习,一步一步做起,当然我也参考了…
理论知识:Optimization: Stochastic Gradient Descent和Convolutional Neural Network CNN卷积神经网络推导和实现.Deep learning:五十一(CNN的反向求导及练习) Deep Learning 学习随记(八)CNN(Convolutional neural network)理解 ufldl学习笔记与编程作业:Convolutional Neural Network(卷积神经网络) [UFLDL]Exercise: Co…
前言 理论知识:UFLDL教程.Deep learning:三十三(ICA模型).Deep learning:三十九(ICA模型练习) 实验环境:win7, matlab2015b,16G内存,2T机械硬盘 难点:本实验难点在于运行时间比较长,跑一次都快一天了,并且我还要验证各种代价函数的对错,所以跑了很多次. 实验内容:Exercise:Independent Component Analysis.从数据库Sampled 8x8 patches from the STL-10 dataset…
前言 理论知识:UFLDL教程.Deep learning:二十六(Sparse coding简单理解).Deep learning:二十七(Sparse coding中关于矩阵的范数求导).Deep learning:二十九(Sparse coding练习) 实验环境:win7, matlab2015b,16G内存,2T机械硬盘 本节实验比较不好理解也不好做,我看很多人最后也没得出好的结果,所以得花时间仔细理解才行. 实验内容:Exercise:Sparse Coding.从10张512*51…
理论知识:UFLDL数据预处理和http://www.cnblogs.com/tornadomeet/archive/2013/04/20/3033149.html 数据预处理是深度学习中非常重要的一步!如果说原始数据的获得,是深度学习中最重要的一步,那么获得原始数据之后对它的预处理更是重要的一部分. 1.数据预处理的方法: ①数据归一化: 简单缩放:对数据的每一个维度的值进行重新调节,使其在 [0,1]或[ − 1,1] 的区间内 逐样本均值消减:在每个样本上减去数据的统计平均值,用于平稳的数…
前言 理论知识:UFLDL教程和http://www.cnblogs.com/tornadomeet/archive/2013/04/09/3009830.html 实验环境:win7, matlab2015b,16G内存,2T机械硬盘 实验内容:Exercise:Convolution and Pooling.从2000张64*64的RGB图片(它是the STL10 Dataset的一个子集)中提取特征作为训练数据集,训练softmax分类器,然后从3200张64*64的RGB图片(它是th…
前言 实验内容:Exercise:Learning color features with Sparse Autoencoders.即:利用线性解码器,从100000张8*8的RGB图像块中提取颜色特征,这些特征会被用于下一节的练习 理论知识:线性解码器和http://www.cnblogs.com/tornadomeet/archive/2013/04/08/3007435.html 实验基础说明: 1.为什么要用线性解码器,而不用前面用过的栈式自编码器等?即:线性解码器的作用? 这一点,Ng…
前言 1.理论知识:UFLDL教程.Deep learning:十六(deep networks) 2.实验环境:win7, matlab2015b,16G内存,2T硬盘 3.实验内容:Exercise: Implement deep networks for digit classification.利用深度网络完成MNIST手写数字数据库中手写数字的识别.即:用6万个已标注数据(即:6万张28*28的图像块(patches)),作为训练数据集,然后把它输入到栈式自编码器中,它的第一层自编码器…