使用梯度下降方法求解凸优化问题的时候,会遇到一个问题,选择什么样的梯度下降步长才合适. 假设优化函数为,若每次梯度下降的步长都固定,则可能出现左图所示的情况,无法收敛.若每次步长都很小,则下降速度非常慢,需要很多轮的迭代,如右图所示.所以步长的选择和收敛速度是一个取舍关系. 于是,有了一种可调节步长的解法,称为backtracking line search. 假设我们当前的位置为Xc 并且要在d方向上寻找更优的解,那么问题就变为了估计Φ(t)的最小值,t是步长. 关于P的新的解是.那么怎么来估…