hive中大表join】的更多相关文章

排序存储数据至BUCKETS,这样可以顺序进行join…
5.大表join大表优化 如果Hive优化实战2中mapjoin中小表dim_seller很大呢?比如超过了1GB大小?这种就是大表join大表的问题.首先引入一个具体的问题场景,然后基于此介绍各自优化方案. 5.1.问题场景 问题场景如下: A表为一个汇总表,汇总的是卖家买家最近N天交易汇总信息,即对于每个卖家最近N天,其每个买家共成交了多少单,总金额是多少,假设N取90天,汇总值仅取成交单数. A表的字段有:buyer_id.seller_id.pay_cnt_90day. B表为卖家基本信…
Hive优化-大表join大表优化 5.大表join大表优化 如果Hive优化实战2中mapjoin中小表dim_seller很大呢?比如超过了1GB大小?这种就是大表join大表的问题.首先引入一个具体的问题场景,然后基于此介绍各自优化方案. 5.1.问题场景 问题场景如下: A表为一个汇总表,汇总的是卖家买家最近N天交易汇总信息,即对于每个卖家最近N天,其每个买家共成交了多少单,总金额是多少,假设N取90天,汇总值仅取成交单数. A表的字段有:buyer_id.seller_id.pay_c…
与hbase外部表(wizad_mdm_main)进行join出现问题: CREATE TABLE wizad_mdm_dev_lmj_edition_result as select *  from  wizad_mdm_dev_lmj_20141120 as w  JOIN wizad_mdm_main as a ON (a.rowkey = w.guid); 程序启动后,死循环,无反应.最后在进行到0.83时,内存溢出失败. 原因: 默认情况下,Hive会自动将小表加到Distribute…
4.大表join小表优化 和join相关的优化主要分为mapjoin可以解决的优化(即大表join小表)和mapjoin无法解决的优化(即大表join大表),前者相对容易解决,后者较难,比较麻烦. 首先介绍大表join小表优化.以销售明细表为例来说明大表join小表的场景. 假如供应商进行评级,比如(五星.四星.三星.二星.一星),此时因为人员希望能够分析各供应商星级的每天销售情况及其占比. 开发人员一般会写出如下SQL: select  seller_star, count(order_id)…
Hive中小表与大表关联(join)的性能分析 [转自:http://blog.sina.com.cn/s/blog_6ff05a2c01016j7n.html] 经常看到一些Hive优化的建议中说当小表与大表做关联时,把小表写在前面,这样可以使Hive的关联速度更快,提到的原因都是说因为小表可以先放到内存中,然后大表的每条记录再去内存中检测,最终完成关联查询.这样的原因看似合理,但是仔细推敲,又站不住脚跟. 多小的表算小表?如果所谓的小表在内存中放不下怎么办?我用2个只有几条记录的表做关联查询…
1.小.大表 join 在小表和大表进行join时,将小表放在前边,效率会高.hive会将小表进行缓存. 2.mapjoin 使用mapjoin将小表放入内存,在map端和大表逐一匹配.从而省去reduce. 样例: select /*+MAPJOIN(b)*/ a.a1,a.a2,b.b2 from tablea a JOIN tableb b ON a.a1=b.b1 在0.7版本号后.也能够用配置来自己主动优化 set hive.auto.convert.join=true;…
1.insert Insert时,from子句既能够放在select子句后,也能够放在insert子句前,以下两句是等价的 hive> FROM invites a INSERT OVERWRITE TABLE eventsSELECT a.bar, count(*) WHERE a.foo > 0 GROUP BY a.bar; hive> INSERT OVERWRITE TABLE events SELECTa.bar, count(*) FROM invites a WHERE…
Hive支持常用的SQL join语句,例如内连接.左外连接.右外连接以及HiVe独有的map端连接.其中map端连接是用于优化Hive连接查询的一个重要技巧. 在介绍各种连接之前,先准备好表和数据. employee员工表: create table if not exists employee( user_id int, username string, dept_id int) row format delimited fields terminated by ' ' lines term…
Hive 桶 对于每一个表(table)或者分区, Hive可以进一步组织成桶,也就是说桶是更为细粒度的数据范围划分.Hive也是 针对某一列进行桶的组织.Hive采用对列值哈希,然后除以桶的个数求余的方式决定该条记录存放在哪个桶当中. 把表(或者分区)组织成桶(Bucket)有两个理由: (1)获得更高的查询处理效率.桶为表加上了额外的结构,Hive 在处理有些查询时能利用这个结构.具体而言,连接两个在(包含连接列的)相同列上划分了桶的表,可以使用 Map 端连接 (Map-side join…