题意:有一张平面图,求它的最小割.N,M.表示网格的大小,N,M均小于等于1000. 左上角点为(1,1),右下角点为(N,M).有以下三种类型的道路  1:(x,y)<==>(x+1,y)  2:(x,y)<==>(x,y+1)  3:(x,y)<==>(x+1,y+1)    思路:第一眼看就是一个最小割=最大流,但点数1000000,边数6000000过大 所以要平面图最小割转最短路 详情见周驿东<浅析最大最小定理在信息学竞赛中的应用> n=1和m=1…
Problem Description A group of thieves is approaching a museum in the country of zjsxzy,now they are in city A,and the museum is in city B,where keeps many broken legs of zjsxzy.Luckily,GW learned the conspiracy when he is watching stars and told it…
题目大概说给一个n×n的方格,边有权值,问从求(1,1)到(n,n)的最小割. 点达到了160000个,直接最大流不好.这题的图是平面图,求最小割可以转化成求其对偶图的最短路,来更高效地求解: 首先源点汇点间新加一条边,然后构造其对偶图: 面作为对偶图的点:而源点到汇点之间新加的边划分出来的两个面分别作为对偶图的源点和汇点 如果两个面之间有边则两个面在对偶图对应的点连边,权值为原来的边权:去掉对偶图源点和汇点之间边 这样可以发现,对偶图的源点到汇点的一条路径就对应这原图的源点到汇点的一个割边集,…
Catch the Theves Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 65768/32768 K (Java/Others)Total Submission(s): 1640    Accepted Submission(s): 514 Problem Description A group of thieves is approaching a museum in the country of zjsxzy,now t…
..和HDU3870类似..注意n=1和m=1的情况. #include<cstdio> #include<cstring> #include<queue> #include<algorithm> using namespace std; #define INF (1<<30) #define MAXN 2800000 struct Edge{ int v,w,next; }edge[MAXN<<]; int vs,vt,NV,NE,…
问题描述 BZOJ1001 LG4001 题解 平面图最小割=对偶图最短路 假设起点和终点间有和其他边都不相交的一条虚边. 如图,平面图的若干条边将一个平面划分为若干个图形,每个图形就是对偶图中的一个点. 对偶图中的每一个点,和它在平面图中每一个相邻的图形间有边,边权为原来分开它们的边的边权. 于是平面图最小割就是对偶图最短路. \(\mathrm{Code}\) #include<bits/stdc++.h> using namespace std; const int maxn=2*100…
P1209 - 拦截导弹 From admin    Normal (OI)总时限:6s    内存限制:128MB    代码长度限制:64KB 背景 Background 实中编程者联盟为了培养技术精湛的后备人才,必须从基础题开始训练. 描述 Description 某国为了防御敌国的导弹袭击,研发出一种导弹拦截系统.但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高度.某天,雷达捕捉到敌国的导弹来袭.由于该系统还在试验阶段,所以只有…
题目链接:BZOJ - 2007 题目分析 首先,左上角的高度是 0 ,右下角的高度是 1.那么所有点的高度一定要在 0 与 1 之间.然而选取 [0, 1] 的任何一个实数,都可以用整数 0 或 1 来替换,获得同样的效果. 虽然输出的答案要求是四舍五入到整数,但其实答案就是一个整数! 那么高度就一定是 0 或 1 了,并且还有一点,所有选 0 的点都连通,所有选 1 的点都联通.因为如果一个选 0 的点被选 1 的点包围,那么它选 1 更优. 于是整个图中所有的点分成了与左上角相连的集合 A…
B20J_2007_[Noi2010]海拔_平面图最小割转对偶图+堆优化Dij 题意:城市被东西向和南北向的主干道划分为n×n个区域.城市中包括(n+1)×(n+1)个交叉路口和2n×(n+1)条双向道路,已知每天每条道路两个方向的人流量,即沿着该方向通过这条道路的人数.每一个交叉路口都有不同的海拔高度值,每向上爬h的高度,就需要消耗h的体力.如果是下坡的话,则不需要耗费体力.已知城市西北角的交叉路口海拔为0,东南角的交叉路口海拔为1(如上图所示),但其它交叉路口的海拔高度都无法得知.小Z想知道…
传送门 首先一个不知道怎么证的结论:任意点的\(H\)只会是\(0\)或\(1\) 那么可以发现原题的本质就是一个最小割,左上角为\(S\),右下角为\(T\),被割开的两个部分就是\(H=0\)与\(H=1\)的部分 直接上Dinic似乎有90pts 然后可以发现原图是一个经典的平面图 于是将平面图最小割转化成对偶图最短路模型,然后堆优化Dijkstra即可. 关于平面图最小割转化为对偶图最短路可以看这个 #include<bits/stdc++.h> #define id(i , j) (…