Hessian Matrix】的更多相关文章

函数\(f\)的Hessian矩阵由是由它的二阶偏导数组成的方阵 \[ H = \begin{bmatrix} \dfrac{\partial^2 f}{\partial x_1^2} & \dfrac{\partial^2 f}{\partial x_1\,\partial x_2} & \cdots & \dfrac{\partial^2 f}{\partial x_1\,\partial x_n} \\[2.2ex] \dfrac{\partial^2 f}{\partial…
就是海赛(海色)矩阵,在网上搜就有. 在数学中,海色矩阵是一个自变量为向量的实值函数的二阶偏导数组成的方块矩阵, Hessian矩阵是多维变量函数的二阶偏导数矩阵,H(i,j)=d^2(f)/(d(xi)d(xj)) 它是对称的.如果是正定的的可用导数=0的变量组确定它的极小值,负定的确定它的极大值,否则无法确定极值. 1.极值(极大值或极小值)的定义 设有定义在区域D Rn上的函数 y=f(x)=f(x1,...,xn) . 对于区域D的一内点x0=(x10,...,xn0),若存在x0的一个…
http://hi.baidu.com/imheaventian/item/c8591b19907bd816e2f98612…
https://baike.baidu.com/item/黑塞矩阵/2248782?fr=aladdin 海塞矩阵 Hasse https://baike.baidu.com/item/半正定矩阵…
http://baike.baidu.com/link?url=o1ts6Eirjn5mHQCZUHGykiI8tDIdtHHOe6IDXagtcvF9ncOfdDOzT8tmFj41_DEsiUCrmNL3MxKwmEGV4yUGiK 之前的我到底在干嘛!!!!啊~~~~ 只能安慰自己,认为为时已晚的时候恰恰是最早的时候. 看了一另外一个做鱼眼的女生,youfuruyuankui(又觉得远远不如的意思?). 算了,就这样吧.关于Hessian矩阵,这个到时候肯定也是要展开的.什么是 Hessi…
Hessian矩阵与多元函数极值 海塞矩阵(Hessian Matrix),又译作海森矩阵,是一个多元函数的二阶偏导数构成的方阵.虽然它是一个具有悠久历史的数学成果.可是在机器学习和图像处理(比如SIFT和SURF特征检測)中,我们也经常遇到它.所以本文就来向读者道一道Hessian Matrix的来龙去脉.本文的主要内容包括: 多元函数极值问题 泰勒展开式与Hessian矩阵 多元函数极值问题 回忆一下我们是怎样处理一元函数求极值问题的. 比如.f(x)=x2,我们会先求一阶导数,即f′(x)…
在使用BA平差之前,对每一个观测方程,得到一个代价函数.对多个路标,会产生一个多个代价函数的和的形式,对这个和进行最小二乘法进行求解,使用优化方法.相当于同时对相机位姿和路标进行调整,这就是所谓的BA. 在优化过程中,对每一个代价函数求取雅克比矩阵E和F,形成一个H矩阵,正因为H矩阵的稀疏性,才可是使用稀疏方法对BA进行求解.把一个大的稀疏矩阵,通过特定的消元法,消解为一个小的稠密矩阵,降低计算量. 摘抄部分有趣的链接,如有不适,请移步原文. 参考原文链接:Jacobian矩阵和Hessian矩…
目录:Matrix Differential Calculus with Applications in Statistics and Econometrics,3rd_[Magnus2019] Title -16 Contents -14 Preface -6 Part One - Matrices 1 1 Basic properties of vectors and matrices 3 1.1 Introduction 3 1.2 Sets 3 1.3 Matrices: additio…
本文转载自: Xianling Mao的专栏 =========================================================================== 想必单独论及“ 梯度.Hessian矩阵.平面方程的法线以及函数导数”等四个基本概念的时候,绝大部分人都能够很容易地谈个一二三,基本没有问题. 其实在应用的时候,这几个概念经常被混淆,本文试图把这几个概念之间的关系整理一下,以便应用之时得心应手. 这四个概念中,Hessian矩阵是最不容易混淆,但却是…
梯度向量 定义: 目标函数f为单变量,是关于自变量向量x=(x1,x2,-,xn)T的函数, 单变量函数f对向量x求梯度,结果为一个与向量x同维度的向量,称之为梯度向量: 1. Jacobian 在向量分析中, 雅可比矩阵是一阶偏导数以一定方式排列成的矩阵, 其行列式称为雅可比行列式. 还有, 在代数几何中, 代数曲线的雅可比量表示雅可比簇:伴随该曲线的一个代数群, 曲线可以嵌入其中. 雅可比矩阵 定义: 目标函数f为一个函数向量,f=(f1(x),f2(x),-fm(x))T;其中,自变量x=…