首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
对NLP的一些新认识
】的更多相关文章
对NLP的一些新认识
其实这是老板让上交的一份总结,贴出来,欢迎朋友们批评指正. 最近看了一部分关于NLP的几篇论文,其中大部分为神经网络实现, 从基本的HMM算法实现,到LSTM实现,有很多方法可以用来处理NLP任务中的阅读.QA或者记忆功能.另外,Facebook给出了20个NLP任务,也有一些公认的测试数据集.目前很多网络的改进和优化,以及各个LSTM变种的目标都是去完成这20个任务. 目前看完的论文的各种做法中: 1) 基于门函数控制的LSTM处理,属于网络变种, 2) 对序列…
NLP相关问题中文本数据特征表达初探
1. NLP问题简介 0x1:NLP问题都包括哪些内涵 人们对真实世界的感知被成为感知世界,而人们用语言表达出自己的感知视为文本数据.那么反过来,NLP,或者更精确地表达为文本挖掘,则是从文本数据出发,来尽可能复原人们的感知世界,从而表达真实世界的过程.这里面就包括如图中所示的模型和算法,包括: ()文本层:NLP文本表示: ()文本-感知世界:词汇相关性分析.主题模型.意见情感分析等: ()文本-真实世界:基于文本的预测等: 显而易见,文本表示在文本挖掘中有着绝对核心的地位,是其他所有模型建构…
NLP问题特征表达基础 - 语言模型(Language Model)发展演化历程讨论
1. NLP问题简介 0x1:NLP问题都包括哪些内涵 人们对真实世界的感知被成为感知世界,而人们用语言表达出自己的感知视为文本数据.那么反过来,NLP,或者更精确地表达为文本挖掘,则是从文本数据出发,来尽可能复原人们的感知世界,从而表达真实世界的过程.这里面就包括如图中所示的模型和算法,包括: ()文本层:NLP文本表示: ()文本-感知世界:词汇相关性分析.主题模型.意见情感分析等: ()文本-真实世界:基于文本的预测等: 显而易见,文本表示在文本挖掘中有着绝对核心的地位,是其他所有模型建构…
NLP/CL 顶会收录
全文转载自知乎@刘知远老师:初学者如何查阅自然语言处理学术资料(2016修订版). 1. 国际学术组织.学术会议与学术论文 自然语言处理(natural language processing,NLP)在很大程度上与计算语言学(computational linguistics,CL)重合,是计算机科学与语言学的交叉学科,也是人工智能的重要方向.与其他很多计算机分支方向类似,由于技术发展迅速,NLP/CL重视学术会议胜过学术期刊.由于发表周期短,并可以通过会议进行交流,绝大多数最新的重要科研进展…
理解BERT:一个突破性NLP框架的综合指南
概述 Google的BERT改变了自然语言处理(NLP)的格局 了解BERT是什么,它如何工作以及产生的影响等 我们还将在Python中实现BERT,为你提供动手学习的经验 BERT简介 想象一下--你正在从事一个非常酷的数据科学项目,并且应用了最新的最先进的库来获得一个好的结果!几天后,一个新的最先进的框架出现了,它有可能进一步改进你的模型. 这不是一个假想的场景--这是在自然语言处理(NLP)领域工作的真正现实!过去的两年的突破是令人兴奋的. 谷歌的BERT就是这样一个NLP框架.我敢说它可…
NLP新手入门指南|北大-TANGENT
开源的学习资源:<NLP 新手入门指南>,项目作者为北京大学 TANGENT 实验室成员. 该指南主要提供了 NLP 学习入门引导.常见任务的开发实现.各大技术教程与文献的相关推荐等内容,是一份非常全的适合新手小白初学入门的权威指南. 值得mark! 以下正文: 本教程供新加入 TANGENT 实验室的同学入门 NLP 使用 PKU-TANGENT nlp-tutorial 写在前面 基础知识 机器学习 深度学习 自然语言处理 文献阅读 Google Scholar 会议论文 前沿进展 工具…
将迁移学习用于文本分类 《 Universal Language Model Fine-tuning for Text Classification》
将迁移学习用于文本分类 < Universal Language Model Fine-tuning for Text Classification> 2018-07-27 20:07:43 ttv56 阅读数 4552更多 分类专栏: 自然语言处理 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/u014475479/article/details/81253506 本文发表于自然…
nlp任务中的传统分词器和Bert系列伴生的新分词器tokenizers介绍
layout: blog title: Bert系列伴生的新分词器 date: 2020-04-29 09:31:52 tags: 5 categories: nlp mathjax: true typora-root-url: .. 本博客选自https://dxzmpk.github.io/,如果想了解更多关于transformers模型的使用问题,请访问博客源地址. 概括 这篇文章将对Bert等模型使用的分词技术进行介绍.同时会涉及这些分词器在huggingface tokenizers库…
NLP的神经网络训练的新模式
https://blog.csdn.net/jdbc/article/details/53292414 该模式分为:embed.encode.attend.predict四部分.…
【NLP】十分钟快览自然语言处理学习总结
十分钟学习自然语言处理概述 作者:白宁超 2016年9月23日00:24:12 摘要:近来自然语言处理行业发展朝气蓬勃,市场应用广泛.笔者学习以来写了不少文章,文章深度层次不一,今天因为某种需要,将文章全部看了一遍做个整理,也可以称之为概述.关于这些问题,博客里面都有详细的文章去介绍,本文只是对其各个部分高度概括梳理.(本文原创,转载注明出处:十分钟学习自然语言处理概述 ) 1 什么是文本挖掘? 文本挖掘是信息挖掘的一个研究分支,用于基于文本信息的知识发现.文本挖掘的准备工作由文本收集.文本分…