[bzoj] 1257 余数之和sum || 数论】的更多相关文章

原题 给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + - + k mod n的值,其中k mod i表示k除以i的余数. \(\sum^n_{i=1}k\%i\) \(=\sum^n_{i=1}k-\lfloor k/i \rfloor*i\) \(=n*k-\sum^n_{i=1}\lfloor k/i \rfloor*i\) \(\lfloor k/i \rfloor\)只有\(\sqrt k\)个取值 证明: 对于所有\(>\sqrt k\…
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1257 题意:计算sigama(m%i)(1<=i<=n). 思路: 这样就简单了,若n*n<=m则可以直接暴力:否则,设t=sqrt(m),[1,t]之间暴力.在i大于t时我们发现,会出现成段的i使得m/i相同,那么我们直接枚举这个值i,那么L=m/(i+1)+1,R=m/i这个区间[L,R]的数字x均满足m/x=i,因此可以成段计算,复杂度也是O(sqrt(m)). i64…
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=46954 题意:f(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n,输入n, k,求f(n, k). 思路:n>k的部分都为k,直接判断即可.n < k时,k mod n = k - k / n * n,观察发现在一定的区间[lhs, rhs]内k/i的值不变.那么就可以直接分块了,  k/lhs * lhs + k…
n >= k 部分对答案的贡献为 k * (n - k) n < k 部分贡献为 ∑ (k - ⌊k / i⌋ * i)  = ∑  , ⌊k / i⌋ 相等的数是连续的一段, 此时这段连续的数对答案的贡献成等差数列, 可以O(1)求出..然后就分⌊k / i⌋相等的一块一块来就行了. 分出来大概是sqrt(k)块.这个sqrt(k)我并不会证Orz...写了个程序验证了一下, 分出来的块数和2 * sqrt(k)非常接近. 所以时间复杂度为O(sqrt(k)) ---------------…
题目链接:余数之和 题意:给定正整数$n$和$k$,计算$k\%1+k\%2+\dots+k\%n$的值 思路:因为$k\%i=k-\left \lfloor \frac{k}{i} \right \rfloor * i$,所以问题就转换为计算$n*k-\sum _{i=1}^{n}\left \lfloor \frac{k}{i} \right \rfloor*i$ 在某一段区间$(l,r)$内$\left \lfloor \frac{k}{i} \right \rfloor$的值是相等的,并…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1257 \( \sum\limits_{i=1}^{n}k\%i = \sum\limits_{i=1}^{n}k-\left \lfloor k/i \right \rfloor *i \) 然后数论分块做即可,注意 \( n>k \) 时右边界的取值. 代码如下: #include<cstdio> #include<cstring> #include<algor…
Description 给出正整数\(n\)和\(k\),计算\(j(n, k)=k\;mod\;1\;+\;k\;mod\;2\;+\;k\;mod\;3\;+\;-\;+\;k\;mod\;n\)的值,其中\(k\;mod\;i\)表示\(k\)除以\(i\)的余数.例如\(j(5, 3)=3\;mod\;1\;+\;3\;mod\;2\;+\;3\;mod\;3\;+\;3\;mod\;4\;+\;3\;mod\;5=0+1+0+3+3=7\) Input 输入仅一行,包含两个整数\(n,…
题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1257 题意: 给定正整数 $n,k$,求 $(k \bmod 1) + (k \bmod 2) + \cdots + (k \bmod n) = \sum_{i=1}^{n}(k \bmod i)$ 的值. 题解: 显然 $k \bmod i = k - \lfloor k/i \rfloor \times i$,因此 $\sum_{i=1}^{n}(k \bmod i) = \sum…
题目描述 给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod i表示k除以i的余数.例如j(5, 3)=3 mod 1 + 3 mod 2 + 3 mod 3 + 3 mod 4 + 3 mod 5=0+1+0+3+3=7 输入 输入仅一行,包含两个整数n, k. 输出 输出仅一行,即j(n, k). 样例输入 5 3 样例输出 7 题解 分块 首先当i>k时,k%i=k,所以如果n>k,直接把答案预先加…
题面 这道题是一道整除分块的模板题: 首先,知道分块的人应该知道,n/i最多有2*sqrt(n)种数,但这和余数有什么关系呢? 注意,只要n/i的值和n/(i+d)的值一样,那么n%i到n%(i+d)的值就是一个等差数列!因为n/i=n/(i+1)*(i+1)=n/i*(i+1)=n/i*i+n/i; 所以在向下取整的情况下它是公差为n/i的等差数列: 因此运用分块的性质和等差数列求和公式就可以切掉这道题: #include <bits/stdc++.h> using namespace st…