opencv学习笔记(六)---图像梯度】的更多相关文章

图像梯度的算法有很多方法:sabel算子,scharr算子,laplacian算子,sanny边缘检测(下个随笔)... 这些算子的原理可参考:https://blog.csdn.net/poem_qianmo/article/details/25560901 下面是我的一些理解: sabel算子: sobel算子主要用于获得数字图像的一阶梯度,常见的应用和物理意义是边缘检测. 函数: Python: cv2.Sobel(src, ddepth, dx, dy[, dst[, ksize[, s…
学习图像梯度,图像边界等 梯度简单来说就是求导. OpenCV提供了三种不同的梯度滤波器,或者说高通滤波器:Sobel,Scharr和Lapacian.Sobel,Scharr其实就是求一阶或二阶导.Scharr是对Sobel的部分优化.Laplacian是求二阶导. 1.Sobel算子和Scharr算子 Sobel算子是高斯平滑和微分操作的结合体,所以他的抗噪声能力很好.你可以设定求导的方向(xorder 或 yorder).还可以设定使用的卷积核大小(ksize).当ksize=-1时,会使…
图像的数据量还是比较大的,对整张图片进行处理会影响我们的处理效率,因此常常只对图像中我们需要的部分进行处理,也就是感兴趣区域ROI.今天我们来看一下如何设置图像的感兴趣区域ROI.以及对ROI区域图像进行复制与替换. 在开始之前我们还是先来看一下Mat类型的数据存储方式以及对Mat类型变量赋值的方式.Mat类型的图像在内存中包含两部分的内容:矩阵头与图像数据矩阵的指针.矩阵头包含了图像的基本信息(如矩阵尺寸.存储方式.存储地址等),而数据指针则指向图像所有像素值的矩阵.通常复制Mat类型数据有两…
正式进入OpenCV学习了,前面开始的都是一些环境搭建和准备工作,对一些数据结构的认识主要是Mat类的认识: [1.学习目标] 图像的加载:imread() 图像的修改:cvtColor() 图像的显示:imshow() 图像的保存:   imwrite() [2.函数原型与参数说明] a.图像的加载: Mat imread( ); 参数说明: filename:文件盘符 flags:flags>0,三通道彩色图   flags=0,灰度图    flags<0,包含Alpha通道的图像 b.…
图像的形态学操作有基本的腐蚀和膨胀操作和其余扩展形态学变换操作(高级操作)-----开运算,闭运算,礼帽(顶帽)操作,黑帽操作...(主要也是为了去噪声,改善图像) 形态学操作都是用于处理二值图像(其实也可以用于彩图,只是结果....)的,1位白,0位黑... 主要是基于卷积核的操作,设立一个指定大小的核,然后用这个核的中心点(默认的,可以修改)分别在每个像素点对照一遍,如果有与周围的值不同的改变值(1为0,0为1)就是腐蚀操作, 将周围像素的最大值赋给全部像素为膨胀操作,其他高级操作都是在腐蚀…
简单阈值,自适应阈值,Otsu's二值化等 1.简单阈值 当像素值高于阈值时,我们给这个像素赋予一个新值,否则给他赋予另一个值.这个函数就是cv2.threshhold().这个函数的第一个参数就是原图像,一般是灰度图(貌似非灰度图也可以).第二个参数就是用来对像素值进行分类的阈值.第三个参数就是当像素值高于阈值时应该被赋予的新像素值.(之前在设置掩码的时候已经提过这个函数了) OpenCV提供了多种不同的阈值方法,这是第四个参数.这些方法包括: cv2.THRESH_BINARY cv2.TH…
图像金字塔指的是同一图像不同分辨率的子图的集合,有向下取样金字塔,向上取样金字塔,拉普拉斯金字塔....它是图像多尺度表达的一种,最主要的是用于图像的分割 向下取样金字塔指高分辨率图像向低分辨率图像的转换,从第i层获得第i+1层的步骤(G[i]->G[i+1]) 1.对图像G[i]进行高斯卷积,卷积核为得到一个新的高斯模糊后的图像, 2.对新图像删除所有偶数行和偶数列(像素),得到缩小为原图四分之一的新图,即G[i+1] 上述操作称为Octave. 重复下去,可以不断缩小图像(每次变为原图的四分…
#图像的缩放操作 #cv.resize(src,dsize,dst=None,,fx=None,fy=None,interpolation=None) #src->原图像,dsize->目标图像的大小(列*行(和其他API不同),fx->相对于原图的水平轴比列,fy->相对于原图的竖直轴的比例 #interpolation—>插入方式 )(一般dsize和fxfy只设其一,会自动推算另一个) image = cv.imread("E:/pictures/1.jpeg…
获取图像的像素值并修改 获取图像的属性(信息) 图像的ROI() 图像通道的拆分及合并 1.获取并修改像素值 先读入图像装入一个图像实体,然后该实体相当于一个多维list,可以直接用数组操作提取像素信息,像素信息为按照BGR顺序排列(灰度图像会返回其灰度值)的一个list,也可以用list操作提取其单个值 import numpy as npimport cv2 img = cv2.imread('2.jpg')px = img[100,100]print(px)blue = img[100,1…
1 不同色彩空间的转换 opencv 中有数百种关于不同色彩空间的转换方法,但常用的有三种色彩空间:灰度.BRG.HSV(Hue-Saturation-Value) 灰度 - 灰度色彩空间是通过去除彩色信息来将其转换成灰阶,灰度色彩空间对中间处理特别有效,比如人脸检测 BGR - 蓝-绿-红 彩色空间,每个像素点都由一个三元数组来表示,分别代表蓝-绿-红三种颜色. HSV,Hue 表示色调,Saturation 表示饱和度,Value 表示黑暗的程度. 2 傅里叶变换 傅里叶变换的概念是许多常见…