整个ssd的网络和multibox_loss_layer】的更多相关文章

总结说来prior_box层只完成了一个提取anchor的过程,其他与gt的match,筛选正负样本比例都是在multibox_loss_layer完成的 http://www.360doc.com/content/17/0810/10/10408243_678091430.shtml 1.以mobileNet-ssd为例子:https://github.com/chuanqi305/MobileNet-SSD/blob/master/train.prototxt ssd在6个层上进行了预测,从…
一个预测层的网络结构如下所示: 可以看到,是由三个分支组成的,分别是"PriorBox"层,以及conf.loc的预测层,其中,conf与loc的预测层的参数是由PriorBox的参数计算得到的,具体计算公式如下: min_size与max_size分别对应一个尺度的预测框(有几个就对应几个预测框),in_size只管自己的预测,而max_size是与aspect_ratio联系在一起的: filp参数是对应aspect_ratio的预测框*2,以几个max_size,再乘以几:最终得…
之前,对SSD的论文进行了解读,可以回顾之前的博客:https://www.cnblogs.com/dengshunge/p/11665929.html. 为了加深对SSD的理解,因此对SSD的源码进行了复现,主要参考的github项目是ssd.pytorch. 搭建SSD的项目,可以分成以下三个部分: 数据读取: 网络搭建: 损失函数的构建. 网络测试. 接下来,本篇博客重点分析网络搭建. 该部分整体比较简单,思路也很清晰. 首先,在train.py中,网络搭建的函数入口是函数build_ss…
Fork版本项目地址:SSD 一.输入标签生成 在数据预处理之后,图片.类别.真实框格式较为原始,不能够直接作为损失函数的输入标签(ssd向前网络只需要图像就行,这里的处理主要需要满足loss的计算),对于一张图片(三维CHW)我们需要如下格式的数据作为损失函数标签: gclasse:           搜索框对应的真实类别  长度为ssd特征层f的list,每一个元素是一个Tensor,shape为:该层中心点行数×列数×每个中心点包含搜索框数目 gscores:           搜索框…
1 SSD基础原理 1.1 SSD网络结构 SSD使用VGG-16-Atrous作为基础网络,其中黄色部分为在VGG-16基础网络上填加的特征提取层.SSD与yolo不同之处是除了在最终特征图上做目标检测之外,还在之前选取的5个特特征图上进行预测. SSD图1为SSD网络进行一次预测的示意图,可以看出,检测过程不仅在填加特征图(conv8_2, conv9_2, conv_10_2, pool_11)上进行,为了保证网络对小目标有很好检测效果,检测过程也在基础网络特征图(conv4_3, con…
原文:http://blog.csdn.net/a8039974/article/details/77592395, http://blog.csdn.net/jesse_mx/article/details/74011886 另外一篇很详细的解析:https://www.cnblogs.com/xuanyuyt/p/7222867.html SSD github : https://github.com/weiliu89/caffe/tree/ssd SSD paper : https://a…
slides 讲得是相当清楚了: http://www.cs.unc.edu/~wliu/papers/ssd_eccv2016_slide.pdf 配合中文翻译来看: https://www.cnblogs.com/cx2016/p/11385009.html default boxes 核心点讲解 及 .cpp 代码见:https://www.cnblogs.com/sddai/p/10206929.html 小哥的后续论文: PUBLICATIONS Frustum PointNets f…
之前,对SSD的论文进行了解读,可以回顾之前的博客:https://www.cnblogs.com/dengshunge/p/11665929.html. 为了加深对SSD的理解,因此对SSD的源码进行了复现,主要参考的github项目是ssd.pytorch. 搭建SSD的项目,可以分成以下四个部分: 数据读取: 网络搭建: 损失函数的构建: 网络测试 接下来,本篇博客重点分析网络测试. 在eval.py文件中,首先需要搭建测试用的网络.此时,需要将传入的第一个参数换成"test"字…
本文目的:介绍一个超赞的项目--用Keras来实现SSD算法. 本文目录: 0 前言 1 如何训练SSD模型 2 如何评估SSD模型 3 如何微调SSD模型 4 其他注意点 0 前言 我在学习完SSD算法之后,对具体细节有很多的疑惑,记录如下: SSD的网络是怎么实现的? 已有的数据是什么样子的? 如何把一张图像打散成anchors? 如何根据标注把各anchors打上标签? 正负样本是如何定义的?匹配策略是咋回事? 困难负样本挖掘是怎么实现的? 数据是怎么喂进去的?出来的又是什么? L2 No…
目标检测解决的是计算机视觉任务的基本问题:即What objects are where?图像中有什么目标,在哪里?这意味着,我们不仅要用算法判断图片中是不是要检测的目标, 还要在图片中标记出它的位置, 用边框或红色方框把目标圈起来.如下图 目前存在的一些挑战在于:除了计算机视觉任务都存在的不同视角.不同光照条件以及类内差异等之外,还存在目标旋转和尺度变化(如小目标),如何精确的目标定位,密集和遮挡条件下的目标检测,以及如何加快检测速度等. 下图是目标检测的发展历程: 以年为界,目标检测分为传统…