EM-高斯混合模型】的更多相关文章

对于高斯混合模型是干什么的呢?它解决什么样的问题呢?它常用在非监督学习中,意思就是我们的训练样本集合只有数据,没有标签. 它用来解决这样的问题:我们有一堆的训练样本,这些样本可以一共分为K类,用z(i)表示.,但是具体样本属于哪类我们并不知道,现在我们需要建立一个模型来描述这个训练样本的分布.这时, 我们就可以用高斯混合模型来进行描述. 怎么入手呢? 高斯混合模型: 我们这么想,因为样本集合潜在地是可以分为K类的,用z(i)表示第 i 样本所属的类别,所以z(i) 的范围为从1至 K.对于我们可…
EM算法有很多的应用: 最广泛的就是GMM混合高斯模型.聚类.HMM等等. The EM Algorithm 高斯混合模型(Mixtures of Gaussians)和EM算法 EM算法 求最大似然函数估计值的一般步骤: (1)写出似然函数: (2)对似然函数取对数,并整理: (3)求导数,令导数为0,得到似然方程: (4)解似然方程,得到的参数即为所求. 期望最大化算法(EM算法): 优点: 1. 简单稳定: 2. 通过E步骤和M步骤使得期望最大化,是自收敛的分类算法,既不需要事先设定类别也…
# coding:utf-8 import numpy as np def qq(y,alpha,mu,sigma,K,gama):#计算Q函数 gsum=[] n=len(y) for k in range(K): gsum.append(np.sum([gama[j,k] for j in range(n)])) return np.sum([g*np.log(ak) for g,ak in zip(gsum,alpha)])+\ np.sum([[np.sum(gama[j,k]*(np.…
提出混合模型主要是为了能更好地近似一些较复杂的样本分布,通过不断添加component个数,能够随意地逼近不论什么连续的概率分布.所以我们觉得不论什么样本分布都能够用混合模型来建模.由于高斯函数具有一些非常有用的性质.所以高斯混合模型被广泛地使用. GMM与kmeans相似,也是属于clustering,不同的是.kmeans是把每一个样本点聚到当中一个cluster,而GMM是给出这些样本点到每一个cluster的概率.每一个component就是一个聚类中心. GMM(Gaussian Mi…
注:本文是对<统计学习方法>EM算法的一个简单总结. 1. 什么是EM算法? 引用书上的话: 概率模型有时既含有观测变量,又含有隐变量或者潜在变量.如果概率模型的变量都是观测变量,可以直接使用极大似然估计法或者贝叶斯的方法进行估计模型参数,但是当模型含有隐藏变量时,就不能简单使用这些方法了.EM算法就是含有隐变量的概率模型参数的极大似然估计法,或者极大似然后验概率估计法. 2. EM 算法的一个小例子:三硬币模型 假设有3枚硬币,记作A,B,C.这些硬币的正面出现的概率分别为\(\pi\).\…
高斯混合模型的EM算法 混合高斯模型 高斯混合模型的概率分布可以写成多个高斯分布的线形叠加,即 \[ p(\mathbf x) = \sum_{k=1}^{K}\pi_k\mathcal N(\mathbf x\ | \ \mathbf \mu_k, \mathbf \Sigma_k) \] 引入一个\(K\)维的二值随机变量\(\mathbf z\), 采用"\(1\)-of-\(K\)"编码,其中一个特定的元素\(z_k\)等于\(1\),其余所有的元素都等于\(0\). 于是\(…
极大似然估计是利用已知的样本结果,去反推最有可能(最大概率)导致这样结果的参数值,也就是在给定的观测变量下去估计参数值.然而现实中可能存在这样的问题,除了观测变量之外,还存在着未知的隐变量,因为变量未知,因此无法直接通过最大似然估计直接求参数值.EM算法是一种迭代算法,用于含有隐变量的概率模型的极大似然估计,或者说是极大后验概率估计. 1.经典的三硬币模型 引入一个例子来说明隐变量存在的问题.假设有3枚硬币,分别记作A,B,C.这些硬币正面出现的概率分别是π,p,q.我们的实验过程如下,先投掷硬…
1. 前言 我们之前有介绍过4. EM算法-高斯混合模型GMM详细代码实现,在那片博文里面把GMM说涉及到的过程,可能会遇到的问题,基本讲了.今天我们升级下,主要一起解析下EM算法中GMM(搞事混合模型)带惩罚项的详细代码实现. 2. 原理 由于我们的极大似然公式加上了惩罚项,所以整个推算的过程在几个地方需要修改下. 在带penality的GMM中,我们假设协方差是一个对角矩阵,这样的话,我们计算高斯密度函数的时候,只需要把样本各个维度与对应的\(\mu_k\)和\(\sigma_k\)计算一维…
1. EM算法-数学基础 2. EM算法-原理详解 3. EM算法-高斯混合模型GMM 4. EM算法-GMM代码实现 5. EM算法-高斯混合模型+Lasso 1. 前言 前面几篇博文对EM算法和GMM模型进行了介绍,本文我们通过对GMM增加一个惩罚项. 2. 不带惩罚项的GMM 原始的GMM的密度函数是 \[ p(\boldsymbol{x}|\boldsymbol{\pi},\boldsymbol{\mu},\boldsymbol{\Sigma})=\sum_{k=1}^K\pi_k\ma…
1. EM算法-数学基础 2. EM算法-原理详解 3. EM算法-高斯混合模型GMM 4. EM算法-高斯混合模型GMM详细代码实现 5. EM算法-高斯混合模型GMM+Lasso 1. 前言 EM的前3篇博文分别从数学基础.EM通用算法原理.EM的高斯混合模型的角度介绍了EM算法.按照惯例,本文要对EM算法进行更进一步的探究.就是动手去实践她. 2. GMM实现 我的实现逻辑基本按照GMM算法流程中的方式实现.需要全部可运行代码,请移步我的github. 输入:观测数据\(x_1,x_2,x…
1. EM算法-数学基础 2. EM算法-原理详解 3. EM算法-高斯混合模型GMM 4. EM算法-高斯混合模型GMM详细代码实现 5. EM算法-高斯混合模型GMM+Lasso 1. 前言 GMM(Gaussian mixture model) 混合高斯模型在机器学习.计算机视觉等领域有着广泛的应用.其典型的应用有概率密度估计.背景建模.聚类等. 2. GMM介绍 高斯混合模型(Gaussian Mixed Model)指的是多个高斯分布函数的线性组合,理论上GMM可以拟合出任意类型的分布…
斯坦福大学机器学习,EM算法求解高斯混合模型.一种高斯混合模型算法的改进方法---将聚类算法与传统高斯混合模型结合起来的建模方法, 并同时提出的运用距离加权的矢量量化方法获取初始值,并采用衡量相似度的方法来融合高斯分量.从对比结果可以看出,基于聚类的高斯混合模型的说话人识别相对于传统的高斯混合模型在识别率上有所提高. ------------------------------ 高斯模型有单高斯模型(SGM)和混合高斯模型(GMM)两种. (1)单高斯模型: 为简单起见,阈值t的选取一般靠经验值…
EM算法与高斯混合模型 前言 EM算法是一种用于含有隐变量的概率模型参数的极大似然估计的迭代算法.如果给定的概率模型的变量都是可观测变量,那么给定观测数据后,就可以根据极大似然估计来求出模型的参数,比如我们假设抛硬币的正面朝上的概率为p(相当于我们假设了概率模型),然后根据n次抛硬币的结果就可以估计出p的值,这种概率模型没有隐变量,而书中的三个硬币的问题(先抛A然后根据A的结果决定继续抛B还是C),这种问题中A的结果就是隐变量,我们只有最后一个硬币的结果,其中的隐变量无法观测,所以这种无法直接根…
EM算法一般表述:       当有部分数据缺失或者无法观察到时,EM算法提供了一个高效的迭代程序用来计算这些数据的最大似然预计.在每一步迭代分为两个步骤:期望(Expectation)步骤和最大化(Maximization)步骤,因此称为EM算法. 如果所有数据Z是由可观測到的样本X={X1, X2,--, Xn}和不可观測到的样本Z={Z1, Z2,--, Zn}组成的,则Y = X∪Z.EM算法通过搜寻使所有数据的似然函数Log(L(Z; h))的期望值最大来寻找极大似然预计,注意此处的h…
EM算法及其应用(一) EM算法及其应用(二): K-means 与 高斯混合模型 上一篇阐述了EM算法的主要原理,这一篇来看其两大应用 -- K-means 与 高斯混合模型,主要由EM算法的观点出发. K-means K-means的目标是将样本集划分为K个簇,使得同一个簇内样本的距离尽可能小,不同簇之间的样本距离尽可能大,即最小化每个簇中样本与质心的距离.K-means属于原型聚类(prototype-based clustering),原型聚类指聚类结构能通过一组原型刻画,而原型即为样本…
似然函数 常说的概率是指给定参数后,预测即将发生的事件的可能性.拿硬币这个例子来说,我们已知一枚均匀硬币的正反面概率分别是0.5,要预测抛两次硬币,硬币都朝上的概率: H代表Head,表示头朝上 p(HH | pH = 0.5) = 0.5*0.5 = 0.25. 这种写法其实有点误导,后面的这个p其实是作为参数存在的,而不是一个随机变量,因此不能算作是条件概率,更靠谱的写法应该是 p(HH;p=0.5). 而似然概率正好与这个过程相反,我们关注的量不再是事件的发生概率,而是已知发生了某些事件,…
先列明材料: 高斯混合模型的推导计算(英文版): http://www.seanborman.com/publications/EM_algorithm.pdf 这位翻译写成中文版: http://www.cnblogs.com/jerrylead/archive/2011/04/06/2006936.html 高斯混合模型的流程: http://www.cnblogs.com/jerrylead/archive/2011/04/06/2006924.html 最大似然估计: http://bl…
Mixtures of Gaussian 这一讲,我们讨论利用EM (Expectation-Maximization)做概率密度的估计.假设我们有一组训练样本x(1),x(2),...x(m),因为是unsupervised的学习问题,所以我们没有任何y的信息. 我们希望利用一个联合分布p(x(i),z(i))=p(x(i)|z(i))p(z(i))来拟合这些数据, 其中z(i)∼Multinomial(ϕ) (ϕj⩾0, ∑kj=1ϕj=1,参数ϕj给出了概率p(z(i)=j)),并且 x(…
EM算法 EM算法主要用于求概率密度函数参数的最大似然估计,将问题$\arg \max _{\theta_{1}} \sum_{i=1}^{n} \ln p\left(x_{i} | \theta_{1}\right)$转换为更加易于计算的$\sum_{i=1}^{n} \ln p\left(x_{i}, \theta_{2} | \theta_{1}\right)$,其中$\theta_2$可以取任意的先验分布$q(\theta_2)$.EM算法的推导过程如下:$$\begin{aligned…
GMM与EM算法的Python实现 高斯混合模型(GMM)是一种常用的聚类模型,通常我们利用最大期望算法(EM)对高斯混合模型中的参数进行估计. 1. 高斯混合模型(Gaussian Mixture models, GMM) 高斯混合模型(Gaussian Mixture Model,GMM)是一种软聚类模型. GMM也可以看作是K-means的推广,因为GMM不仅是考虑到了数据分布的均值,也考虑到了协方差.和K-means一样,我们需要提前确定簇的个数. GMM的基本假设为数据是由几个不同的高…
讲授高斯混合模型的基本概念,训练算法面临的问题,EM算法的核心思想,算法的实现,实际应用. 大纲: 高斯混合模型简介实际例子训练算法面临的困难EM算法应用-视频背景建模总结 高斯混合模型简写GMM,期望最大化算法EM.概率分布要确定里边的参数有两种手段,即据估计.最大似然估计. 高斯混合模型简介: 高斯分布也叫正态分布,在机器学习的一些书和论文里边,一般把它称为高斯分布,尤其是老外习惯这样写. 高斯混合模型是多个高斯分布的一个叠加,它的概率密度函数可以写成: 其中x肯定是一个连续性的随机变量,一…
一.高斯混合模型概述 1.公式 高斯混合模型是指具有如下形式的概率分布模型: 其中,αk≥0,且∑αk=1,是每一个高斯分布的权重.Ø(y|θk)是第k个高斯分布的概率密度,被称为第k个分模型,参数为θk=(μk, αk2),概率密度的表达式为: 高斯混合模型就是K个高斯分布的线性组合,它假设所有的样本可以分为K类,每一类的样本服从一个高斯分布,那么高斯混合模型的学习过程就是去估计K个高斯分布的概率密度Ø(y|θk),以及每个高斯分布的权重αk.每个观测样本出现的概率就表示为K个高斯分布概率的加…
高斯混合模型(GMM)参数优化及实现 (< xmlnamespace prefix ="st1" ns ="urn:schemas-microsoft-com:office:smarttags" />2010-11-13) 1 高斯混合模型概述< xmlnamespace prefix ="o" ns ="urn:schemas-microsoft-com:office:office" /> 高斯密度函…
最近学习基础算法<统计学习方法>,看到利用EM算法估计高斯混合模型(GMM)的时候,发现利用贝叶斯的来理解高斯混合模型的应用其实非常合适. 首先,假设对于贝叶斯比较熟悉,对高斯分布也熟悉.本文将GMM用于聚类来举例. 除了简单的高斯分布,理论上通过组合多个不同的高斯分布可以构成任意复杂的分布函数.如下图所示: 在最大似然,贝叶斯方法与朴素贝叶斯分类中,2.1中提到高斯概率密度用来计算连续变量情况下的朴素贝叶斯概率.该情况下的高斯分布是训练已知,然后对于输入变量求取其概率密度,结合类别的先验概率…
查资料的时候看了一个不文明的事情,转载别人的东西而不标注出处,结果原创无人知晓,转载很多人评论~~标注了转载而不说出处这样的人有点可耻! 写在前面: Gaussian Mixture Model (GMM).事实上,GMM 和 k-means 很像,不过 GMM 是学习出一些概率密度函数来(所以 GMM 除了用在 clustering 上之外,还经常被用于 density estimation ),简单地说,k-means 的结果是每个数据点被 assign 到其中某一个 cluster 了,而…
一.高斯混合模型 软分类算法,即对每一个样本,计算其属于各个分布的概率,概率值最大的就是这个样本所属的分类. 对于训练样本的分布,看成为多个高斯分布加权得到的.其中每个高斯分布即为某一特定的类. 高斯混合模型和高斯判别分析非常像,唯一的区别就是在高斯混合模型中,每个样本所属的类别标签是未知的. 为了计算每个样本属于各个分布的概率Z,对每个高斯分布的参数进行初始化,然后以此计算概率Z,再根据Z来对所有参数进行优化,直到收敛. 二.EM算法 1.Jensen不等式 若二阶导数的不等号方向逆转(f(x…
k-means应该是原来级别的聚类方法了,这整理下一个使用后验概率准确评测其精度的方法—高斯混合模型. 我们谈到了用 k-means 进行聚类的方法,这次我们来说一下另一个很流行的算法:Gaussian Mixture Model (GMM).事实上,GMM 和 k-means 很像,不过 GMM 是学习出一些概率密度函数来(所以 GMM 除了用在 clustering 上之外,还经常被用于 density estimation ),简单地说,k-means 的结果是每个数据点被 assign…
在Spark2.0版本中(不是基于RDD API的MLlib),共有四种聚类方法:      (1)K-means      (2)Latent Dirichlet allocation (LDA)      (3)Bisecting k-means(二分k均值算法)      (4)Gaussian Mixture Model (GMM).        基于RDD API的MLLib中,共有六种聚类方法:      (1)K-means      (2)Gaussian mixture  …
从几何上讲,单高斯分布模型在二维空间应该近似于椭圆,在三维空间上近似于椭球.遗憾的是在很多分类问题中,属于同一类别的样本点并不满足“椭圆”分布的特性.这就引入了高斯混合模型.——可以认为是基本假设! 高斯混合模型Gaussian Mixture Model (GMM) 摘自:http://www.infocool.net/kb/Spark/201609/193351.html 由于本文写的不g够完整详细,给出一个学习链接:       http://www.cnblogs.com/CBDocto…
GMM方法概述:基于高斯混合模型期望最大化. 高斯混合模型 (GMM) 高斯分布与概率密度分布 - PDF 初始化 初始化EM模型: Ptr<EM> em_model = EM::create(); em_model->setClustersNumber(numCluster); em_model->setCovarianceMatrixType(EM::COV_MAT_SPHERICAL); em_model->setTermCriteria(TermCriteria(Te…