机器学习经典算法之EM】的更多相关文章

一.简介 EM 的英文是 Expectation Maximization,所以 EM 算法也叫最大期望算法. 我们先看一个简单的场景:假设你炒了一份菜,想要把它平均分到两个碟子里,该怎么分? 很少有人用称对菜进行称重,再计算一半的分量进行平分.大部分人的方法是先分一部分到碟子 A 中,然后再把剩余的分到碟子 B 中,再来观察碟子 A 和 B 里的菜是否一样多,哪个多就匀一些到少的那个碟子里,然后再观察碟子 A 和 B 里的是否一样多--整个过程一直重复下去,直到份量不发生变化为止. 你能从这个…
原文:http://blog.csdn.net/suipingsp/article/details/41645779 支持向量机基本上是最好的有监督学习算法,因其英文名为support vector machine,简称SVM.通俗来讲,它是一种二类分类模型,其基本模型定义为特征空间上的间隔最大的线性分类器,其学习策略便是间隔最大化,最终可转化为一个凸二次规划问题的求解. (一)理解SVM基本原理 1,SVM的本质--分类 给定一些数据点,它们分别属于两个不同的类,现在要找到一个线性分类器把这些…
<Python3入门机器学习经典算法与应用> 章节第1章 欢迎来到 Python3 玩转机器学习1-1 什么是机器学习1-2 课程涵盖的内容和理念1-3 课程所使用的主要技术栈第2章 机器学习基础2-1 机器学习世界的数据2-2 机器学习的主要任务2-3 监督学习,非监督学习,半监督学习和增强学习2-4 批量学习,在线学习,参数学习和非参数学习2-5 和机器学习相关的“哲学”思考2-6 课程使用环境搭建第3章 Jupyter Notebook, numpy和matplotlib3-1 Jupy…
一.ID3决策树概述 ID3决策树是另一种非常重要的用来处理分类问题的结构,它形似一个嵌套N层的IF…ELSE结构,但是它的判断标准不再是一个关系表达式,而是对应的模块的信息增益.它通过信息增益的大小,从根节点开始,选择一个分支,如同进入一个IF结构的statement,通过属性值的取值不同进入新的IF结构的statement,直到到达叶子节点,找到它所属的“分类”标签. 它的流程图是一课无法保证平衡的多叉树,每一个父节点都是一个判断模块,通过判断,当前的向量会进入它的某一个子节点中,这个子节点…
一.前言 1.ocr概述 OCR (Optical Character Recognition,光学字符识别)是指电子设备(例如扫描仪或数码相机)检查纸上打印的字符,通过检测暗.亮的模式确定其形状,然后用字符识别方法将形状翻译成计算机文字的过程:即,针对印刷体字符,采用光学的方式将纸质文档中的文字转换成为黑白点阵的图像文件,并通过识别软件将图像中的文字转换成文本格式,供文字处理软件进一步编辑加工的技术(摘自百度百科:光学字符识别). KNN在OCR的识别过程中能发挥作用的地方在于将图像中的文字转…
一.KNN概述 K-(最)近邻算法KNN(k-Nearest Neighbor)是数据挖掘分类技术中最简单的方法之一.它具有精度高.对异常值不敏感的优点,适合用来处理离散的数值型数据,但是它具有 非常高的计算复杂度和空间复杂度,需要大量的计算(距离计算). 它的工作原理是:如果已经给定一个带有标签(分类)的数据集(训练集),对于每一个给定的没有标签(分类)的新向量,通过计算该向量与训练集中的每一个向量的距离, 选择前k个最小的距离,在k个距离中出现次数最多的标签(分类)则是新向量的标签(分类).…
一.C4.5决策树概述 C4.5决策树是ID3决策树的改进算法,它解决了ID3决策树无法处理连续型数据的问题以及ID3决策树在使用信息增益划分数据集的时候倾向于选择属性分支更多的属性的问题.它的大部分流程和ID3决策树是相同的或者相似的,可以参考我的上一篇博客:https://www.cnblogs.com/DawnSwallow/p/9452586.html C4.5决策树和ID3决策树相同,也可以产生一个离线的“决策树”,而且对于连续属性组成的C4.5决策树数据集,C4.5算法可以避开“测试…
(一)认识回归 回归是统计学中最有力的工具之中的一个. 机器学习监督学习算法分为分类算法和回归算法两种,事实上就是依据类别标签分布类型为离散型.连续性而定义的. 顾名思义.分类算法用于离散型分布预測,如前面讲过的KNN.决策树.朴素贝叶斯.adaboost.SVM.Logistic回归都是分类算法.回归算法用于连续型分布预測.针对的是数值型的样本,使用回归.能够在给定输入的时候预測出一个数值.这是对分类方法的提升,由于这样能够预測连续型数据而不不过离散的类别标签. 回归的目的就是建立一个回归方程…
(一)KNN依旧是一种监督学习算法 KNN(K Nearest Neighbors,K近邻 )算法是机器学习全部算法中理论最简单.最好理解的.KNN是一种基于实例的学习,通过计算新数据与训练数据特征值之间的距离,然后选取K(K>=1)个距离近期的邻居进行分类推断(投票法)或者回归.假设K=1.那么新数据被简单分配给其近邻的类.KNN算法算是监督学习还是无监督学习呢?首先来看一下监督学习和无监督学习的定义.对于监督学习.数据都有明白的label(分类针对离散分布,回归针对连续分布),依据机器学习产…
Python3入门机器学习经典算法与应用 (一个人学习或许会很枯燥,但是寻找更多志同道合的朋友一起,学习将会变得更加有意义✌✌) 使用新版python3语言和流行的scikit-learn框架,算法与编程两翼齐飞,由浅入深,一步步的进入机器学习的世界 学习机器学习相关技术的最好方式就是先自己设计和完成一些小项目,学到的不只是一门课程,更是不断思考的能力 第1章 欢迎来到 Python3 玩转机器学习 欢迎大家来到<Python3玩转机器学习>的课堂.在这个课程中,我们将从0开始,一点一点进入机…