理解numpy.dot()】的更多相关文章

import numpy.matlib import numpy as np a = np.array([[1,2],[3,4]]) b = np.array([[11,12],[13,14]]) print(np.dot(a,b)) 计算结果: 1,2.   11,12.          1 * 11 + 2 * 13.  1 * 12 + 2 * 14.      37,40 3,4.  13,14.    3 * 11 + 4 * 13. 3 * 12 + 4 * 14. 85,92…
python代码 x = np.array([[1,3],[1,4]]) y = np.array([[2,2],[3,1]]) print np.dot(x,y) 结果 [[11 5] [14 6]] 结算过程, 行 * 列 1 3    2 2     1*2 + 3 * 3 1 * 2 + 3 * 1       11 51 4    3 1     1*2 + 4 * 3 1 * 2 + 4 * 1       14 6…
# *_*coding:utf-8 *_* # athor:auto import numpy dot = numpy.dot([0.100, 0.200],2.) print(dot) #[ 0.2 0.4] 理解是numpy.dot第一个参数是点的坐标值,后面是倍率…
# 理解 NumPy 在这篇文章中,我们将介绍使用NumPy的基础知识,NumPy是一个功能强大的Python库,允许更高级的数据操作和数学计算. # 什么是 NumPy? NumPy是一个功能强大的Python库,主要用于对多维数组执行计算.NumPy这个词来源于两个单词-- Numerical和Python.NumPy提供了大量的库函数和操作,可以帮助程序员轻松地进行数值计算.这类数值计算广泛用于以下任务: 机器学习模型:在编写机器学习算法时,需要对矩阵进行各种数值计算.例如矩阵乘法.换位.…
这个函数在的数字信号处理中用处还是比较广泛的,函数的具体定义如下所示: numpy.dot(a, b, out=None) 该函数的作用是获取两个元素a,b的乘积,表示的含义如下所示: dot(a, b)[i,j,k,m] = sum(a[i,j,:] * b[k,:,m]) 使用方法如下所示: 单个数: >>> np.dot(3, 4) 12 复数: >>> np.dot([2j, 3j], [2j, 3j]) (-13+0j) 二维矩阵: >>>…
目录 ndarray是什么 ndarray的设计哲学 ndarray的内存布局 为什么可以这样设计 小结 参考 博客:博客园 | CSDN | blog 本文的主要目的在于理解numpy.ndarray的内存结构及其背后的设计哲学. ndarray是什么 NumPy provides an N-dimensional array type, the ndarray, which describes a collection of "items" of the same type. Th…
一.为啥需要numpy python虽然说注重优雅简洁,但它终究是需要考虑效率的.别说运行速度不是瓶颈,在科学计算中运行速度就是瓶颈. python的列表,跟java一样,其实只是一维列表.一维列表相当于一种类型,这样对于元素的访问效率是很低的. python中一切皆引用,每一个int对象都要用指针指一下再用int存储一下,浪费空间也浪费时间.当读取某个元素的时候需要先读取引用,再根据引用指向的内存地址来读取int值. numpy相当于完全采用了C语言那套数组机制. 二.numpy原则 一切皆一…
之前一直做得只是采集数据,而没有再做后期对数据的处理分析工作,自己也是有意愿去往这些方向学习的,最近就在慢慢的接触. 首先简单理解一下numpy和pandas:一.NumPy:1.NumPy是高性能计算和数据分析的基础包.2.NumPy系统是Python的一种开源的数值计算扩展.3.可用来存储和处理大型矩阵,比Python自身的嵌套列表(nested list structure)结构要高效的多(该结构也可以用来表示矩阵(matrix)).4.提供了许多高级的数值编程工具,如:矩阵数据类型.矢量…
http://blog.csdn.net/iamzhangzhuping/article/details/52370241…
exp,高等数学里以自然常数e为底的指数函数 Exp:返回e的n次方,e是一个常数为2.71828 Exp 函数 返回 e(自然对数的底)的幂次方.   a = 1 print np.exp(a) a = 2 print np.exp(a) print 2.71828182846 * 2.71828182846 结果: 2.71828182846 7.38905609893 7.38905609894 np.exp(1) 为自身, np.exp(2) 为平方…