【机器学习】PCA】的更多相关文章

&*&:2017/6/16update,最近几天发现阅读这篇文章的朋友比较多,自己阅读发现,部分内容出现了问题,进行了更新. 一.什么是PCA:摘用一下百度百科的解释 PCA(Principal Component Analysis),主成分分析,是一种统计方法,通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分. 二.PCA的用途及原理: 用途:数据降维 原理:线性映射(或线性变换),简单的来说就是将高维空间数据投影到低维空间上,那么在数据分析上,…
1.PCA降维 降维有什么作用呢?数据在低维下更容易处理.更容易使用:相关特征,特别是重要特征更能在数据中明确的显示出来:如果只有两维或者三维的话,更便于可视化展示:去除数据噪声降低算法开销 常见的降维算法有主成分分析(principal component analysis,PCA).因子分析(Factor Analysis)和独立成分分析(Independent Component Analysis,ICA),其中PCA是目前应用最为广泛的方法. 在PCA中,数据从原来的坐标系转换到新的坐标…
一.基于Sklearn的PCA代码实现 import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier from sklearn.decomposition import PCA digits =…
PCA降维--两种实现 : SVD或EVD. 强力总结. 在鸢尾花数据集(iris)实做 今天自己实现PCA,从网上看文章的时候,发现有的文章没有搞清楚把SVD(奇异值分解)实现和EVD(特征值分解)实现,查阅多个文章很容易更糊涂,所以搞懂之后写下这个总结. 先说最关键的点: a. PCA两个主要的实现方式: SVD(奇异值分解), EVD(特征值分解). b. 特征值分解方式需要计算协方差矩阵,分解的是协方差矩阵.  SVD方式不需要计算协方差矩阵,分解的是经过中心化的原数据矩阵 1.特征值分…
主成分分析(Principal Component Analysis) 一个非监督的机器学习算法 主要用于数据的降维 通过降维,可以发现更便于人类理解的特征 其他应用:可视化.去噪 通过映射,我们可以把数据从二维降到一维: 显然,右边的要好一点,因为间距大,更容易看出差距. 如何定义样本间距?使用方差,因为方差越小,数据月密集,方差越大,数据月分散. 另均值为0: 因为均值为0,w是单位向量,模为1,所以: 梯度上升法求解PCA问题 分析:X是mn的矩阵,m是样本数,n是特征数,X^(i)是第i…
@(131 - Machine Learning | 机器学习) PCA是一种特征选择方法,可将一组相关变量转变成一组基础正交变量 25 PCA的回顾和定义 Demo: when to use PCA latent features driving the patterns in the data (demo find the big shots in enron) 访问隐藏的特征 dimensionality reduction 1)visualize high dimensional dat…
机器学习(8) -- 降维 核心思想:将数据沿方差最大方向投影,数据更易于区分 简而言之:PCA算法其表现形式是降维,同时也是一种特征融合算法. 对于正交属性空间(对2维空间即为直角坐标系)中的样本点,如何用一个超平面(直线/平面的高维推广)对所有样本进行恰当的表达? 事实上,若存在这样的超平面,那么它大概应具有这样的性质: 最近重构性 : 样本点到这个超平面的距离都足够近: 最大可分性:样本点在这个超平面上的投影能尽可能分开. 一般的,将特征量从n维降到k维: 以最近重构性为目标,PCA的目标…
讲授机器学习面临的挑战.人工特征的局限性.为什么选择神经网络.深度学习的诞生和发展.典型的网络结构.深度学习在机器视觉.语音识别.自然语言处理.推荐系统中的应用 大纲: 机器学习面临的挑战 特征工程的局限性 机器学习算法的瓶颈 为什么选择了神经网络 深度学习的基本思路 深度学习的诞生历程 深度学习得以发展的因素 典型的网络结构 深度学习的发展现状 在机器视觉中的应用 在语音识别中的应用 在自然语言处理中的应用 在推荐系统中的应用 深度强化学习简介 本集总结 机器学习面临的挑战: 经典的机器学习算…
大家看了之后,可以点一波关注或者推荐一下,以后我也会尽心尽力地写出好的文章和大家分享. 本文先导:在我们平时看NBA的时候,可能我们只关心球员是否能把球打进,而不太关心这个球的颜色,品牌,只要有3D效果,看到球员扣篮的动作就可以了,比如下图: 如果我们直接对篮球照片进行几百万像素的处理,会有几千维甚至几万维的数据要计算,计算量很大.而往往我们只需要大概勾勒出篮球的大概形状就可以描述问题,所以必须对此类数据降维,这样会使处理数据更加轻松.这个在人脸识别中必须要降维,因为我们在做特征提取的时候几万维…
1. 降维技术 1.1 降维的必要性 1. 多重共线性--预测变量之间相互关联.多重共线性会导致解空间的不稳定,从而可能导致结果的不连贯.2. 高维空间本身具有稀疏性.一维正态分布有68%的值落于正负标准差之间,而在十维空间上只有0.02%. 3. 过多的变量会妨碍查找规律的建立. 4. 仅在变量层面上分析可能会忽略变量之间的潜在联系.例如几个预测变量可能落入仅反映数据某一方面特征的一个组内. 1. 2 降维的目的: 1. 减少预测变量的个数 2. 确保这些变量是相互独立的 3. 提供一个框架来…
前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习心得,这次是第13章 - 利用PCA来简化数据. 这里介绍,机器学习中的降维技术,可简化样品数据. 降维技术的用途 使得数据集更易使用: 降低很多算法的计算开销: 去除噪声: 使得结果易懂. 基本概念 降维(dimensionality reduction). 如果样本数据的特征维度很大,会使得难以分析和理解.我们可以通过降维技术减少维度. 降维技术并不是将影响少的特征去掉,而是将样本数据集转换成一个低维度…
网易公开课,第14, 15课 notes,10 之前谈到的factor analysis,用EM算法找到潜在的因子变量,以达到降维的目的 这里介绍的是另外一种降维的方法,Principal Components Analysis (PCA), 比Factor Analysis更为直接,计算也简单些 参考,A Tutorial on Principal Component Analysis, Jonathon Shlens   主成分分析基于, 在现实中,对于高维的数据,其中有很多维都是扰动噪音,…
四大机器学习降维算法:PCA.LDA.LLE.Laplacian Eigenmaps 机器学习领域中所谓的降维就是指采用某种映射方法,将原高维空间中的数据点映射到低维度的空间中.降维的本质是学习一个映射函数 f : x->y,其中x是原始数据点的表达,目前最多使用向量表达形式. y是数据点映射后的低维向量表达,通常y的维度小于x的维度(当然提高维度也是可以的).f可能是显式的或隐式的.线性的或非线性的. 目前大部分降维算法处理向量表达的数据,也有一些降维算法处理高阶张量表达的数据.之所以使用降维…
转:http://www.cnblogs.com/LeftNotEasy/archive/2011/01/08/lda-and-pca-machine-learning.html 版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gmail.com 前言: 第二篇的文章中谈到,和部门老大一宁出去outing的时候,他给了我相当多的机器学习的建议,里面涉…
版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gmail.com 前言: 第二篇的文章中谈到,和部门老大一宁出去outing的时候,他给了我相当多的机器学习的建议,里面涉及到很多的算法的意义.学习方法等等.一宁上次给我提到,如果学习分类算法,最好从线性的入手,线性分类器最简单的就是LDA,它可以看做是简化版的SVM,如果想理解SVM这种分类器,那理…
本文简单整理了以下内容: (一)维数灾难 (二)特征提取--线性方法 1. 主成分分析PCA 2. 独立成分分析ICA 3. 线性判别分析LDA (一)维数灾难(Curse of dimensionality) 维数灾难就是说当样本的维数增加时,若要保持与低维情形下相同的样本密度,所需要的样本数指数型增长.从下面的图可以直观体会一下.当维度很大样本数量少时,无法通过它们学习到有价值的知识:所以需要降维,一方面在损失的信息量可以接受的情况下获得数据的低维表示,增加样本的密度:另一方面也可以达到去噪…
PCA 的数学原理和可视化效果 本文结构: 什么是 PCA 数学原理 可视化效果 1. 什么是 PCA PCA (principal component analysis, 主成分分析) 是机器学习中对数据进行降维的一种方法. 例如,我们有这样的交易数据,它有这几个特征:(日期, 浏览量, 访客数, 下单数, 成交数, 成交金额),从经验可知,“浏览量”和“访客数”,“下单数”和“成交数”之间会具有较强的相关关系.这种情况下,我们保留其中的两个维度就可以保证原有的信息完整. 但是当我们在做降维的…
第13章 利用 PCA 来简化数据 降维技术 场景 我们正通过电视观看体育比赛,在电视的显示器上有一个球. 显示器大概包含了100万像素点,而球则可能是由较少的像素点组成,例如说一千个像素点. 人们实时的将显示器上的百万像素转换成为一个三维图像,该图像就给出运动场上球的位置. 在这个过程中,人们已经将百万像素点的数据,降至为三维.这个过程就称为降维(dimensionality reduction) 数据显示 并非大规模特征下的唯一难题,对数据进行简化还有如下一系列的原因: 使得数据集更容易使用…
许多机器学习算法都有一个假设:输入数据要是线性可分的.感知机算法必须针对完全线性可分数据才能收敛.考虑到噪音,Adalien.逻辑斯蒂回归和SVM并不会要求数据完全线性可分. 但是现实生活中有大量的非线性数据,此时用于降维的线性转换手段比如PCA和LDA效果就不会太好.这一节我们学习PCA的核化版本,核PCA.这里的"核"与核SVM相近. 运用核PCA,我们能将非线性可分的数据转换到新的.低维度的特征子空间,然后运用线性分类器解决. 核函数和核技巧 还记得在核SVM那里,我们讲过解决非…
主成分分析法(PAC)的优化——选择主成分的数量 根据上一讲,我们知道协方差为① 而训练集的方差为②. 我们希望在方差尽可能小的情况下选择尽可能小的K值. 也就是说我们需要找到k值使得①/②的值尽可能小(≤0.01) 那么我们可以先令K = 1 然后进行主要成分分析,得到U reduce 和 Z 计算其比例是否小鱼0.01,如果不是就令K = 2 再进行计算. 直到找到使得比例满足的k的最小值. 不过,在octave中,我们也利用在调用svd函数时候,得到的 S,U ,V参数进行判断.S是一个n…
降维是机器学习中很重要的一种思想.在机器学习中经常会碰到一些高维的数据集,而在高维数据情形下会出现数据样本稀疏,距离计算等困难,这类问题是所有机器学习方法共同面临的严重问题,称之为“ 维度灾难 ”.另外在高维特征中容易出现特征之间的线性相关,这也就意味着有的特征是冗余存在的.基于这些问题,降维思想就出现了. 降维方法有很多,而且分为线性降维和非线性降维,本篇文章主要讲解线性降维. 1.奇异值分解(SVD) 为什么先介绍SVD算法,因为在后面的PCA算法的实现用到了SVD算法.SVD算法不光可以用…
降维技术 对数据进行降维有如下一系列的原因: 使得数据集更容易使用 降低很多算法的计算开销 去除噪音 使得结果易懂 在以下3种降维技术中, PCA的应用目前最为广泛,因此本章主要关注PCA. 主成分分析(Principal Component Analysis, PCA) 通俗理解:就是找出一个最主要的特征,然后进行分析. 在PCA中,数据集从原始坐标系转换为新的坐标系.新的坐标系选择由数据本身决定.第一个新轴选择数据中方差最大的方向.第二轴与第一轴正交,且具有最大方差的方向.对于原始数据中的所…
机器学习实战(Machine Learning in Action)学习笔记————09.利用PCA简化数据 关键字:PCA.主成分分析.降维作者:米仓山下时间:2018-11-15机器学习实战(Machine Learning in Action,@author: Peter Harrington)源码下载地址:https://www.manning.com/books/machine-learning-in-actiongit@github.com:pbharrin/machinelearn…
主成分分析(principal component analysis)是一种常见的数据降维方法,其目的是在“信息”损失较小的前提下,将高维的数据转换到低维,从而减小计算量. PCA的本质就是找一些投影方向,使得数据在这些投影方向上的方差最大,而且这些投影方向是相互正交的.这其实就是找新的正交基的过程,计算原始数据在这些正交基上投影的方差,方差越大,就说明在对应正交基上包含了更多的信息量.后面会证明,原始数据协方差矩阵的特征值越大,对应的方差越大,在对应的特征向量上投影的信息量就越大.反之,如果特…
14.降维 觉得有用的话,欢迎一起讨论相互学习~Follow Me 14.5重建压缩表示 Reconstruction from Compressed Representation 使用PCA,可以把 1000 维的数据压缩到100 维特征,或将三维数据压缩到一二维表示.所以,如果如果把PCA任务是一个压缩算法,应该能回到这个压缩表示之前的形式,回到原有的高维数据的一种近似.下图是使用PCA将样本\(x^{(i)}映射到z^{(i)}\)上 即是否能通过某种方法将z上的点重新恢复成使用\(x_{…
最近在找降维的解决方案中,发现了下面的思路,后面可以按照这思路进行尝试下: 链接:http://www.36dsj.com/archives/26723 引言 机器学习领域中所谓的降维就是指采用某种映射方法,将原高维空间中的数据点映射到低维度的空间中.降维的本质是学习一个映射函数 f : x->y,其中x是原始数据点的表达,目前最多使用向量表达形式. y是数据点映射后的低维向量表达,通常y的维度小于x的维度(当然提高维度也是可以的).f可能是显式的或隐式的.线性的或非线性的. 目前大部分降维算法…
一.数据 获取数据 import numpy as np from sklearn.datasets import fetch_mldata mnist = fetch_mldata("MNIST original") sklearn 的 datasets 中,一个特有的方法:fetch_mldata,使用此方法可以直接从一个官方网站中下载各种机器学习数据: 格式:datas = fetch_mldata("字符串"): 查看数据 mnist # 输出: {'COL…
一.基础理解 1) PCA 降维的基本原理 寻找另外一个坐标系,新坐标系中的坐标轴以此表示原来样本的重要程度,也就是主成分:取出前 k 个主成分,将数据映射到这 k 个坐标轴上,获得一个低维的数据集. 2)主成分分析法的本质 将数据集从一个坐标系转换到另一个坐标系,原坐标系有 n 个维度(n 中特征),则转换的新坐标系也有 n 个维度,每个主成分表示一个维度,只是对于转换后的坐标系,只取前 k 个维度(也就是前 k 个主成分),此 k 个维度相对于数据集更加重要,形成矩阵 Wk : 3)将 n…
PCA(Principal Component Analysis) 一.指导思想 降维是实现数据优化的手段,主成分分析(PCA)是实现降维的手段: 降维是在训练算法模型前对数据集进行处理,会丢失信息. 降维后,如果丢失了过多的信息,在我们不能容忍的范围里,就不应该降维. 降维没有正确与否的标准,只有丢失信息的多少: 降维的方式本质是有无穷多种的.我们期望在其中找到“最好”,或者说“丢失信息”最少的那一种: PCA算法使用的是:降维后保持原始数据的方差的多少,来衡量降维后保持原始数据了多少信息:…
 主成分分析PCA 机器学习实战之PCA test13.py #-*- coding:utf-8 import sys sys.path.append("pca.py") import pca from numpy import * dataMat = pca.loadDataSet('testSet.txt') lowDMat, reconMat, eigVals, eigVects = pca.pca(dataMat, 1) res = shape(lowDMat) print(&…