遗传方差:遗传方差又称表型方差(phenotypic variance),通常结合基因型方差(genotype variance)和环境方差(environmental variance).遗传方差主要包括三方面:加性遗传方差(Additive genetic variance).显性遗传方差(Dominance genetic variance)和上位遗传方差(Epistatic genetic variance) 如下图所示: 假设有三个基因座(locus 1, locus 2, locus…
如文章"Genome-wide Complex Trait Analysis(GCTA)-全基因组复杂性状分析"中介绍的GCTA,是一款基于全基因组关联分析发展的分析工具,除了计算不同性状/表型间(traits)的遗传相关性外,还可以计算亲缘关系.近交系数--,下面简单介绍如何利用GCTA计算不同性状/表型的遗传相关性. 一,在Linux上安装GCTA工具: wget -r -np -pk -nH -P ./to/your/path/way/gcta http://cnsgenomic…
http://mathworld.wolfram.com/Variance.html Variance For a single variate having a distribution with known population mean , the population variance , commonly also written , is defined as (1) where is the population mean and denotes the expectation v…
有监督学习中,预测误差的来源主要有两部分,分别为 bias  与 variance,模型的性能取决于 bias 与 variance 的 tradeoff ,理解 bias 与 variance 有助于我们诊断模型的错误,避免 over-fitting 或者 under-fitting. 在统计与机器学习领域权衡 Bias  与 Variance 是一项重要的任务,因为他可以使得用有限训练数据训练得到的模型更好的范化到更多的数据集上,监督学习中的误差来源主要为 Bias 与 Variance,接…
1.首先 Error = Bias + Variance  Error反映的是整个模型的准确度, Bias反映的是模型在样本上的输出与真实值之间的误差,即模型本身的精准度, Variance反映的是模型每一次输出结果与模型输出期望之间的误差,即模型的稳定性. 2.Bias与Variance往往是不能兼得的  在一个实际系统中,Bias与Variance往往是不能兼得的.如果要降低模型的Bias,就一定程度上会提高模型的Variance,反之亦然. 造成这种现象的根本原因是,我们总是希望试图用有限…
A more complex model does not always lead to better performance on testing data. Because error due to both of 'bias' and 'variance'. From training data, we can find \(f^*\), \(f^*\) is an enstimator of \(\hat{f}\) bias (偏差) 和 variance (方差) 的直观表示: 数学公…
ICLR 2013 International Conference on Learning Representations May 02 - 04, 2013, Scottsdale, Arizona, USA ICLR 2013 Workshop Track Accepted for Oral Presentation Zero-Shot Learning Through Cross-Modal Transfer Richard Socher, Milind Ganjoo, Hamsa Sr…
基于暗通道优先的单幅图像去雾算法(Matlab/C++) 算法原理:             参见论文:Single Image Haze Removal Using Dark Channel Prior  [1]        ① 暗通道定义      何恺明 通过对大量在户外拍摄的自然景物图片进行统计分析得出一个结论:在绝大多数非天空的局部区域里,某一些像素总会(至少一个颜色通道)具有很低的值.换言之,该区域光强度的最小值是个很小的数(趋于0). 基于上述结论,我们定义暗通道,用公式描述,对…
网易公开课,第9,10课 notes,http://cs229.stanford.edu/notes/cs229-notes4.pdf 这章要讨论的问题是,如何去评价和选择学习算法   Bias/variance tradeoff 还是用这组图,学习算法追求的是generalization error(对未知数据的预测误差),而不是training error(只是对训练集) 最左边,underfit,我们说这种学习算法有较大的bias Informally, we define the bia…
Linear Basis Function Models 线性模型的一个关键属性是它是参数的一个线性函数,形式如下: w是参数,x可以是原始的数据,也可以是关于原始数据的一个函数值,这个函数就叫basis function,记作φ(x),于是线性模型可以表示成: w0看着难受,定义一个函数φ0(x) = 1, 模型的形式再一次简化成: 以上就是线性模型的一般形式.basis function有很多选择,例如Gaussian.sigmoid.tanh (tanh(x) = 2 * sigmoid(…