传送门 费用流经典题. 按照题目要求建边. 为了方便我将所有格子拆点,三种情况下容量分别为111,infinfinf,infinfinf,费用都为validi,jval_{id_{i,j}}validi,j​​. 然后从源点向第一排的mmm个点连边,三种情况下容量都为111,费用都为0. 然后从最后一排的m+n−1m+n-1m+n−1个点向汇点连边,三种情况下容量为111,infinfinf,infinfinf,费用都为0. 至于格子之间的路径,三种情况下容量为111,111,infinfinf…
传送门 费用流水题. 依然是照着题意模拟建边就行了. 为了练板子又重新写了一遍费用流. 代码: #include<bits/stdc++.h> #define N 305 #define M 90005 using namespace std; inline int read(){ int ans=0; char ch=getchar(); while(!isdigit(ch))ch=getchar(); while(isdigit(ch))ans=(ans<<3)+(ans<…
传送门 费用流入门题. 直接按照题意模拟. 把货物的数量当做容量建边. 然后跑一次最小费用流和最大费用流就行了. 代码: #include<bits/stdc++.h> #define N 305 #define M 90005 using namespace std; inline int read(){ int ans=0; char ch=getchar(); while(!isdigit(ch))ch=getchar(); while(isdigit(ch))ans=(ans<&…
#6010. 「网络流 24 题」数字梯形   题目描述 给定一个由 n nn 行数字组成的数字梯形如下图所示.梯形的第一行有 m mm 个数字.从梯形的顶部的 m mm 个数字开始,在每个数字处可以沿左下或右下方向移动,形成一条从梯形的顶至底的路径. 分别遵守以下规则: 从梯形的顶至底的 m mm 条路径互不相交: 从梯形的顶至底的 m mm 条路径仅在数字结点处相交: 从梯形的顶至底的 m mm 条路径允许在数字结点相交或边相交. 输入格式 第 1 11 行中有 2 22 个正整数 m mm…
题目描述 给定一个由 \(n\) 行数字组成的数字梯形如下图所示.梯形的第一行有 \(m\) 个数字.从梯形的顶部的 \(m\) 个数字开始,在每个数字处可以沿左下或右下方向移动,形成一条从梯形的顶至底的路径. 分别遵守以下规则: 从梯形的顶至底的 \(m\) 条路径互不相交: 从梯形的顶至底的 \(m\) 条路径仅在数字结点处相交: 从梯形的顶至底的 \(m\) 条路径允许在数字结点相交或边相交. 输入格式 第 \(1\) 行中有 \(2\) 个正整数 \(m\) 和 \(n\),分别表示数字…
传送门 费用流sb题. 直接从sss向每个点连边,容量为现有物品量. 然后从ttt向每个点连边,容量为最后库存量. 由于两个点之间可以互相任意运送物品,因此相邻的直接连infinfinf的边就行了. 代码: #include<bits/stdc++.h> #define N 205 #define M 50005 using namespace std; inline int read(){ int ans=0; char ch=getchar(); while(!isdigit(ch))ch…
Libre 6010「网络流 24 题」数字梯形 (网络流,最大费用最大流) Description 给定一个由n 行数字组成的数字梯形如下图所示.梯形的第一行有m 个数字.从梯形的顶部的m 个数字开始,在每个数字处可以沿左下或右下方向移动,形成一条从梯形的顶至底的路径. 规则1:从梯形的顶至底的m条路径互不相交. 规则2:从梯形的顶至底的m条路径仅在数字结点处相交. 规则3:从梯形的顶至底的m条路径允许在数字结点相交或边相交. 对于给定的数字梯形,分别按照规则1,规则2,和规则3 计算出从梯形…
传送门 网络流好题. 这道题可以动态建图. 不难想到把每个球iii都拆点成i1i_1i1​和i2i_2i2​,每次连边(s,i1),(i2,t)(s,i_1),(i_2,t)(s,i1​),(i2​,t),如果(u,v)(u,v)(u,v)可以匹配的话就连边(u1,v2)(u_1,v_2)(u1​,v2​),然后用最大流检验,如果能流动说明不用加柱子,否则需要新加一个柱子. 题目还要求输出方案. 那么我们在dfsdfsdfs的时候更新后继就可以了. 代码: #include<bits/stdc+…
题目描述 给定平面 \(\text{xoy}\) 上 \(n\) 个开线段组成的集合 \(\text{I}\) ,和一个正整数 \(k\) ,试设计一个算法. 从开线段集合 \(\text{I}\) 中选取出开线段集合 \(\text{S}\in \text{I}\) , 使得在x轴上的任何一点 \(\text{p}\) , \(\text{S}\) 中与直线 \(\text{x}=\text{p}\) 相交的开线段个数不超过 \(\text{k}\) , 且 \(\sum_{\text{z}…
[luogu_P1251][LOJ#6008]「网络流 24 题」餐巾计划 试题描述 一个餐厅在相继的 \(N\) 天里,第 \(i\) 天需要 \(R_i\) 块餐巾 \((i=l,2,-,N)\).餐厅可以从三种途径获得餐巾. (1)购买新的餐巾,每块需 \(p\) 分: (2)把用过的餐巾送到快洗部,洗一块需 \(m\) 天,费用需 \(f\) 分 \((f<p)\).如 \(m=1\) 时,第一天送到快洗部的餐巾第二天就可以使用了,送慢洗的情况也如此. (3)把餐巾送到慢洗部,洗一块需…