非线性分类器(Non-linear hypotheses) 为什么使用非线性分类器 我们举几个栗子: 假如我们有一个数据空间如左上角坐标系所看到的,那么我们要的模型须要如右边公式所看到的的预測函数. 如果有n个特征那么计算二次多项式就有O(n^2)的复杂度.n能有多大? 我们来看以下这个栗子. 如果我们须要识别汽车,假如选取图像上两个点,那么就如左边坐标系所看到的,这没什么. 但实际上我们须要的数据空间时整张图片全部的像素.也就是如果图像是50∗50那么我们就有2500个像素点.也就是须要250…
一位ML工程师构建深度神经网络的实用技巧 https://mp.weixin.qq.com/s/2gKYtona0Z6szsjaj8c9Vg 作者| Matt H/Daniel R 译者| 婉清 编辑| Jane 出品| AI 科技大本营 [导读]在经历成千上万个小时机器学习训练时间后,计算机并不是唯一学到很多东西的角色,作为开发者和训练者的我们也犯了很多错误,修复了许多错误,从而积累了很多经验.在本文中,作者基于自己的经验(主要基于 TensorFlow)提出了一些训练神经网络的建议,还结合了…
上一章介绍了使用逻辑回归处理分类问题.尽管逻辑回归是个非常好用的模型,但是在处理非线性问题时仍然显得力不从心,下图就是一个例子: 线性模型已经无法很好地拟合上面的样本,所以选择了更复杂的模型,得到了复杂的分类曲线: 然而这个模型存在两个问题:过拟合和模型复杂度.过拟合问题可参考<ML(附录3)——过拟合与欠拟合>,这里重点讲模型复杂度. 还是非线性分类,现在将输入扩充为100个,为了拟合数据,我们构造了更多的特征: 约有 1002/2 = 5000个特征.由此看来,对于n个输入,二次项特征的个…
在TensorFlow中实现文本分类的卷积神经网络 Github提供了完整的代码: https://github.com/dennybritz/cnn-text-classification-tf 在这篇文章中,我们将实现一个类似于Kim Yoon的卷积神经网络语句分类的模型. 本文提出的模型在一系列文本分类任务(如情绪分析)中实现了良好的分类性能,并已成为新的文本分类架构的标准基准. 我假设你已经熟悉了应用于NLP的卷积神经网络的基础知识. 如果没有,我建议先阅读NLP的理解卷积神经网络,以获…
范例程序下载:http://files.cnblogs.com/gpcuster/ANN3.rar如果您有疑问,可以先参考 FAQ 如果您未找到满意的答案,可以在下面留言:) 0 目录人工神经网络入门(1) —— 单层人工神经网络应用示人工神经网络入门(2) —— 人工神经基本概念介绍人工神经网络入门(3) —— 多层人工神经网络应用示例人工神经网络入门(4) —— AForge.Net简介 1 介绍这篇文章中,我们将介绍一个用C#实现的框架AForge,利用这个框架,您可以方便地操作人工网络,…
对于分类问题的神经网络最后一层的函数做如下知识点总结: sigmoid和softmax一般用作神经网络的最后一层做分类函数(备注:sigmoid也用作中间层做激活函数): 对于类别数量大于2的分类问题,如果每个类别之间互斥,则选用softmax函数(例如:类别为牡丹花.玫瑰花.菊花),如果每个类别之间有交叉则选用与类别数量相等的sigmoid函数(例如:类别为小孩.大人.男人.女人,此处应该选用4个sigmoid函数): 神经网络最后一层的分类函数直接面临作损失函数的选择: softmax函数的…
今天看到一款神经网络入门游戏.BugBrain.在游戏中,你能够通过连接神经元.设置神经元阈值等建造虫子的大脑,让瓢虫.蠕虫.蚂蚁等完毕各种任务.下载下来玩了玩,难度真不是入门级的= =! 真心佩服作者的智商. 游戏官方主页 http://www.biologic.com.au/bugbrain/ (左下是蠕虫的大脑) (一个蚂蚁的大脑就如此复杂···) BugBrain游戏提供了一个很不错的游戏地图编辑器,和測试平台. 地图编辑器中玩家能够依据个人喜好,编辑你自己的虚拟世界.让你的小虫们生活在…
在TensorFlow中实现文本分类的卷积神经网络 Github提供了完整的代码: https://github.com/dennybritz/cnn-text-classification-tf 在这篇文章中,我们将实现一个类似于Kim Yoon的卷积神经网络语句分类的模型. 本文提出的模型在一系列文本分类任务(如情绪分析)中实现了良好的分类性能,并已成为新的文本分类架构的标准基准. 我假设你已经熟悉了应用于NLP的卷积神经网络的基础知识. 如果没有,我建议先阅读NLP的理解卷积神经网络,以获…
随机初始化 在线性回归和逻辑回归中,使用梯度下降法之前,将θ设置为0向量,有时会习惯性的将神经网络中的权重全部初始化为0,然而这在神经网络中并不适用. 以简单的三层神经网络为例,将全部权重都设置为0,如下图所示: 假设仅有一个训练数据,使用梯度下降,在第一次迭代时: 可以看到,第一次迭代的结果是:隐藏层的权重和激活值全部相等,输入层的权重相当于所有输入项放缩了相同的倍数. 在第二次迭代时: 此时,隐藏层的激活值又一次全部相等.继续迭代也会得到相同的结果,即a(2)的所有激活值和权重都一样,这显然…
上一章的神经网络实际上是前馈神经网络(feedforward neural network),也叫多层感知机(multilayer perceptron,MLP).具体来说,每层神经元与下一层神经元全互联,神经元之间不存在同层或跨层连接:输入层神经元仅接受外界输入,不进行函数处理:隐藏层与输出层包含功能神经元,对信号进行加工:最终结果由输出层神经元输出.“前馈”是说网络拓补结构上不存在环路或回路,而不是指网络信号不能向后传递. 前向传播(FP) 所谓前向传播,就是根据一些列包含偏置项的权重矩阵Θ…